Estimating DSGE Models using Multilevel Sequential Monte Carlo in Approximate Bayesian Computation

被引:0
|
作者
Alaminos, David [1 ]
Ramirez, Ana [1 ]
Fernandez-Gamez, Manuel A. [2 ]
Becerra-Vicario, Rafael [2 ]
机构
[1] Univ Malaga, Dept Mech Engn & Energy Efficiency, Campus El Ejido S-N, E-29071 Malaga, Spain
[2] Univ Malaga, Dept Finance & Accounting, Campus El Ejido S-N, E-29071 Malaga, Spain
来源
关键词
Dynamic General Equilibrium Models; Monte Carlo algorithms; Approximate Bayesian Computation; Macroeconomic forecasting;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamic Stochastic General Equilibrium (DSGE) models allow for probabilistic estimations with the aim of formulating macroeconomic policies and monitoring them. In this study, we propose to apply the Sequential Monte Carlo Multilevel algorithm and Approximate Bayesian Computation (MLSMC-ABC) to increase the robustness of DSGE models built for small samples and with irregular data. Our results indicate that MLSMC-ABC improves the estimation of these models in two aspects. Firstly, the accuracy levels of the existing models are increased, and secondly, the cost of the resources used is reduced due to the need for shorter execution time.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 50 条
  • [1] Multilevel Monte Carlo in approximate Bayesian computation
    Jasra, Ajay
    Jo, Seongil
    Nott, David
    Shoemaker, Christine
    Tempone, Raul
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (03) : 346 - 360
  • [2] On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo
    Filippi, Sarah
    Barnes, Chris P.
    Cornebise, Julien
    Stumpf, Michael P. H.
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (01) : 87 - 107
  • [3] An adaptive sequential Monte Carlo method for approximate Bayesian computation
    Pierre Del Moral
    Arnaud Doucet
    Ajay Jasra
    [J]. Statistics and Computing, 2012, 22 : 1009 - 1020
  • [4] An adaptive sequential Monte Carlo method for approximate Bayesian computation
    Del Moral, Pierre
    Doucet, Arnaud
    Jasra, Ajay
    [J]. STATISTICS AND COMPUTING, 2012, 22 (05) : 1009 - 1020
  • [5] Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation
    Bonassi, Fernando V.
    West, Mike
    [J]. BAYESIAN ANALYSIS, 2015, 10 (01): : 171 - 187
  • [6] Multifidelity Approximate Bayesian Computation with Sequential Monte Carlo Parameter Sampling
    Prescott, Thomas P.
    Baker, Ruth E.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 788 - 817
  • [7] On sequential Monte Carlo, partial rejection control and approximate Bayesian computation
    Peters, G. W.
    Fan, Y.
    Sisson, S. A.
    [J]. STATISTICS AND COMPUTING, 2012, 22 (06) : 1209 - 1222
  • [8] On sequential Monte Carlo, partial rejection control and approximate Bayesian computation
    G. W. Peters
    Y. Fan
    S. A. Sisson
    [J]. Statistics and Computing, 2012, 22 : 1209 - 1222
  • [9] Bayesian inference for fitting cardiac models to experiments: estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation
    Alejandro Nieto Ramos
    Flavio H. Fenton
    Elizabeth M. Cherry
    [J]. Medical & Biological Engineering & Computing, 2023, 61 : 75 - 95
  • [10] Bayesian inference for fitting cardiac models to experiments: estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation
    Ramos, Alejandro Nieto
    Fenton, Flavio H.
    Cherry, Elizabeth M.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (01) : 75 - 95