Estimating DSGE Models using Multilevel Sequential Monte Carlo in Approximate Bayesian Computation

被引:0
|
作者
Alaminos, David [1 ]
Ramirez, Ana [1 ]
Fernandez-Gamez, Manuel A. [2 ]
Becerra-Vicario, Rafael [2 ]
机构
[1] Univ Malaga, Dept Mech Engn & Energy Efficiency, Campus El Ejido S-N, E-29071 Malaga, Spain
[2] Univ Malaga, Dept Finance & Accounting, Campus El Ejido S-N, E-29071 Malaga, Spain
来源
关键词
Dynamic General Equilibrium Models; Monte Carlo algorithms; Approximate Bayesian Computation; Macroeconomic forecasting;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamic Stochastic General Equilibrium (DSGE) models allow for probabilistic estimations with the aim of formulating macroeconomic policies and monitoring them. In this study, we propose to apply the Sequential Monte Carlo Multilevel algorithm and Approximate Bayesian Computation (MLSMC-ABC) to increase the robustness of DSGE models built for small samples and with irregular data. Our results indicate that MLSMC-ABC improves the estimation of these models in two aspects. Firstly, the accuracy levels of the existing models are increased, and secondly, the cost of the resources used is reduced due to the need for shorter execution time.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 50 条
  • [21] Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models
    Daly, Aidan C.
    Cooper, Jonathan
    Gavaghan, David J.
    Holmes, Chris
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2017, 14 (134)
  • [22] Subsampling sequential Monte Carlo for static Bayesian models
    David Gunawan
    Khue-Dung Dang
    Matias Quiroz
    Robert Kohn
    Minh-Ngoc Tran
    [J]. Statistics and Computing, 2020, 30 : 1741 - 1758
  • [23] Subsampling sequential Monte Carlo for static Bayesian models
    Gunawan, David
    Dang, Khue-Dung
    Quiroz, Matias
    Kohn, Robert
    Tran, Minh-Ngoc
    [J]. STATISTICS AND COMPUTING, 2020, 30 (06) : 1741 - 1758
  • [24] Improving Approximate Bayesian Computation via Quasi-Monte Carlo
    Buchholz, Alexander
    Chopin, Nicolas
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (01) : 205 - 219
  • [25] Multilevel Sequential2 Monte Carlo for Bayesian inverse problems
    Latz, Jonas
    Papaioannou, Iason
    Ullmann, Elisabeth
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 368 : 154 - 178
  • [26] Probabilistic load flow method using approximate Bayesian computation and Markov chain Monte Carlo
    Gao, Fengyang
    Yuan, Cheng
    Li, Zhaojun
    Qi, Xiaodong
    Zhuang, Shengxian
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (11): : 265 - 272
  • [27] Estimating species trees using approximate Bayesian computation
    Fan, Helen Hang
    Kubatko, Laura S.
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2011, 59 (02) : 354 - 363
  • [28] SEQUENTIAL MONTE CARLO METHODS FOR ESTIMATING DYNAMIC MICROECONOMIC MODELS
    Blevins, Jason R.
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (05) : 773 - 804
  • [29] Bayesian Geosteering Using Sequential Monte Carlo Methods
    Veettil, Dilshad R. Akkam
    Clark, Kit
    [J]. PETROPHYSICS, 2020, 61 (01): : 99 - 111
  • [30] Multilevel Monte Carlo using approximate distributions of the CIR process
    Chao Zheng
    [J]. BIT Numerical Mathematics, 2023, 63