Estimating DSGE Models using Multilevel Sequential Monte Carlo in Approximate Bayesian Computation

被引:0
|
作者
Alaminos, David [1 ]
Ramirez, Ana [1 ]
Fernandez-Gamez, Manuel A. [2 ]
Becerra-Vicario, Rafael [2 ]
机构
[1] Univ Malaga, Dept Mech Engn & Energy Efficiency, Campus El Ejido S-N, E-29071 Malaga, Spain
[2] Univ Malaga, Dept Finance & Accounting, Campus El Ejido S-N, E-29071 Malaga, Spain
来源
关键词
Dynamic General Equilibrium Models; Monte Carlo algorithms; Approximate Bayesian Computation; Macroeconomic forecasting;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamic Stochastic General Equilibrium (DSGE) models allow for probabilistic estimations with the aim of formulating macroeconomic policies and monitoring them. In this study, we propose to apply the Sequential Monte Carlo Multilevel algorithm and Approximate Bayesian Computation (MLSMC-ABC) to increase the robustness of DSGE models built for small samples and with irregular data. Our results indicate that MLSMC-ABC improves the estimation of these models in two aspects. Firstly, the accuracy levels of the existing models are increased, and secondly, the cost of the resources used is reduced due to the need for shorter execution time.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 50 条
  • [41] Calibration of Stochastic Channel Models using Approximate Bayesian Computation
    Bharti, Ayush
    Pedersen, Troels
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [42] Analysis of Nested Multilevel Monte Carlo Using Approximate Normal Random Variables
    Giles, Michael
    Sheridan-Methven, Oliver
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 200 - 226
  • [43] Model Discrimination in Copolymerization Using the Sequential Bayesian Monte Carlo Method
    Masoumi, Samira
    Duever, Thomas A.
    MACROMOLECULAR THEORY AND SIMULATIONS, 2016, 25 (05) : 435 - 448
  • [44] Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method
    Wang, Liangliang
    Bouchard-Cote, Alexandre
    Doucet, Arnaud
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) : 1362 - 1374
  • [45] Sequential Dynamic Leadership Inference Using Bayesian Monte Carlo Methods
    Li, Qing
    Ahmad, Bashar, I
    Godsill, Simon J.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (04) : 2039 - 2052
  • [46] Sequential Monte Carlo for Graphical Models
    Naesseth, Christian A.
    Lindsten, Fredrik
    Schott, Thomas B.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [47] Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
    Warne, David J.
    Prescott, Thomas P.
    Baker, Ruth E.
    Simpson, Matthew J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 469
  • [48] Multilevel Sequential Monte Carlo Samplers for Normalizing Constants
    Del Moral, Pierre
    Jasra, Ajay
    Law, Kody J. H.
    Zhou, Yan
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2017, 27 (03):
  • [49] OPTIMAL PARALLELIZATION OF A SEQUENTIAL APPROXIMATE BAYESIAN COMPUTATION ALGORITHM
    Marin, Jean-Michel
    Pudlo, Pierre
    Sedki, Mohammed
    2012 WINTER SIMULATION CONFERENCE (WSC), 2012,
  • [50] Multilevel sequential Monte Carlo algorithms for MIMO demodulation
    Aggarwal, Pradeep
    Wang, Xiaodong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2007, 6 (02) : 750 - 758