On sequential Monte Carlo, partial rejection control and approximate Bayesian computation

被引:0
|
作者
G. W. Peters
Y. Fan
S. A. Sisson
机构
[1] CSIRO Sydney,School of Mathematics and Statistics
[2] University of New South Wales,undefined
来源
Statistics and Computing | 2012年 / 22卷
关键词
Approximate Bayesian computation; Bayesian computation; Likelihood-free inference; Partial rejection control; Sequential Monte Carlo samplers;
D O I
暂无
中图分类号
学科分类号
摘要
We present a variant of the sequential Monte Carlo sampler by incorporating the partial rejection control mechanism of Liu (2001). We show that the resulting algorithm can be considered as a sequential Monte Carlo sampler with a modified mutation kernel. We prove that the new sampler can reduce the variance of the incremental importance weights when compared with standard sequential Monte Carlo samplers, and provide a central limit theorem. Finally, the sampler is adapted for application under the challenging approximate Bayesian computation modelling framework.
引用
收藏
页码:1209 / 1222
页数:13
相关论文
共 50 条
  • [1] On sequential Monte Carlo, partial rejection control and approximate Bayesian computation
    Peters, G. W.
    Fan, Y.
    Sisson, S. A.
    [J]. STATISTICS AND COMPUTING, 2012, 22 (06) : 1209 - 1222
  • [2] An adaptive sequential Monte Carlo method for approximate Bayesian computation
    Pierre Del Moral
    Arnaud Doucet
    Ajay Jasra
    [J]. Statistics and Computing, 2012, 22 : 1009 - 1020
  • [3] An adaptive sequential Monte Carlo method for approximate Bayesian computation
    Del Moral, Pierre
    Doucet, Arnaud
    Jasra, Ajay
    [J]. STATISTICS AND COMPUTING, 2012, 22 (05) : 1009 - 1020
  • [4] Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation
    Bonassi, Fernando V.
    West, Mike
    [J]. BAYESIAN ANALYSIS, 2015, 10 (01): : 171 - 187
  • [5] Multifidelity Approximate Bayesian Computation with Sequential Monte Carlo Parameter Sampling
    Prescott, Thomas P.
    Baker, Ruth E.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 788 - 817
  • [6] On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo
    Filippi, Sarah
    Barnes, Chris P.
    Cornebise, Julien
    Stumpf, Michael P. H.
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (01) : 87 - 107
  • [7] Multilevel Monte Carlo in approximate Bayesian computation
    Jasra, Ajay
    Jo, Seongil
    Nott, David
    Shoemaker, Christine
    Tempone, Raul
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (03) : 346 - 360
  • [8] Estimating DSGE Models using Multilevel Sequential Monte Carlo in Approximate Bayesian Computation
    Alaminos, David
    Ramirez, Ana
    Fernandez-Gamez, Manuel A.
    Becerra-Vicario, Rafael
    [J]. JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2020, 79 (01): : 21 - 25
  • [9] astroABC: An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation
    Jennings, E.
    Madigan, M.
    [J]. ASTRONOMY AND COMPUTING, 2017, 19 : 16 - 22
  • [10] Generator Parameter Calibration by Adaptive Approximate Bayesian Computation With Sequential Monte Carlo Sampler
    Khazeiynasab, Seyyed Rashid
    Qi, Junjian
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (05) : 4327 - 4338