Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers

被引:17
|
作者
Green, P. L. [1 ,3 ]
Maskell, S. [2 ,3 ]
机构
[1] Univ Liverpool, Sch Engn, Liverpool L69 7ZF, Merseyside, England
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 7ZF, Merseyside, England
[3] Univ Liverpool, Inst Risk & Uncertainty, Liverpool L69 7ZF, Merseyside, England
关键词
Big Data; Parameter estimation; Model updating; System identification; Sequential Monte Carlo sampler; TRAINING DATA; IDENTIFICATION; MODELS;
D O I
10.1016/j.ymssp.2016.12.023
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper the authors present a method which facilitates computationally efficient parameter estimation of dynamical systems from a continuously growing set of measurement data. It is shown that the proposed method, which utilises Sequential Monte Carlo samplers, is guaranteed to be fully parallelisable (in contrast to Markov chain Monte Carlo methods) and can be applied to a wide variety of scenarios within structural dynamics. Its ability to allow convergence of one's parameter estimates, as more data is analysed, sets it apart from other sequential methods (such as the particle filter). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:379 / 396
页数:18
相关论文
共 50 条
  • [41] Structure from motion using sequential Monte Carlo methods
    Qian, G
    Chellappa, R
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, 2001, : 614 - 621
  • [42] Parallel sequential Monte Carlo samplers and estimation of the number of states in a Hidden Markov Model
    Nam, Christopher F. H.
    Aston, John A. D.
    Johansen, Adam M.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (03) : 553 - 575
  • [43] Structure from Motion Using Sequential Monte Carlo Methods
    Gang Qian
    Rama Chellappa
    International Journal of Computer Vision, 2004, 59 : 5 - 31
  • [44] SEQUENTIAL MONTE CARLO SAMPLERS FOR MARGINAL LIKELIHOOD COMPUTATION IN MULTIPLICATIVE EXPONENTIAL NOISE MODELS
    Dikmen, Onur
    Cemgil, A. Taylan
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 276 - 279
  • [45] Estimating trajectory HMM parameters using Monte Carlo EM with Gibbs sampler
    Zen, Heiga
    Nankaku, Yoshihiko
    Tokuda, Keiichi
    Kitamura, Tadashi
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 1173 - 1176
  • [46] Parallel sequential Monte Carlo samplers and estimation of the number of states in a Hidden Markov Model
    Christopher F. H. Nam
    John A. D. Aston
    Adam M. Johansen
    Annals of the Institute of Statistical Mathematics, 2014, 66 : 553 - 575
  • [47] Convergence of Monte Carlo distribution estimates from rival samplers
    Heard, Nicholas A.
    Turcotte, Melissa J. M.
    STATISTICS AND COMPUTING, 2016, 26 (06) : 1147 - 1161
  • [48] Monte Carlo method for adaptively estimating the unknown parameters and the dynamic state of chaotic systems
    Marino, Ines P.
    Miguez, Joaquin
    Meucci, Riccardo
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [49] Convergence of Monte Carlo distribution estimates from rival samplers
    Nicholas A. Heard
    Melissa J. M. Turcotte
    Statistics and Computing, 2016, 26 : 1147 - 1161
  • [50] Simulating the Proton Transfer in Gramicidin A by a Sequential Dynamical Monte Carlo Method
    Till, Mirco S.
    Essigke, Timm
    Becker, Torsten
    Ullmann, G. Matthias
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (42): : 13401 - 13410