Calderon-Zygmund operators in the Bessel setting for all possible type indices

被引:12
|
作者
Castro, Alejandro J. [1 ]
Szarek, Tomasz Z. [2 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
[2] Polish Acad Sci, Inst Matemat, PL-00956 Warsaw, Poland
关键词
Bessel operator; Bessel semigroup; maximal operator; square function; multiplier; Riesz transform; Calderon-Zygmund operator; RIESZ TRANSFORMS; NORM INEQUALITIES; MULTIPLIERS; EXPANSIONS;
D O I
10.1007/s10114-014-2326-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that many harmonic analysis operators in the Bessel setting, including maximal operators, Littlewood-Paley-Stein type square functions, multipliers of Laplace or Laplace-Stieltjes transform type and Riesz transforms are, or can be viewed as, Caldern-Zygmund operators for all possible values of type parameter lambda in this context. This extends results existing in the literature, but being justified only for a restricted range of lambda.
引用
收藏
页码:637 / 648
页数:12
相关论文
共 50 条
  • [31] A BOUNDEDNESS CRITERION FOR GENERALIZED CALDERON-ZYGMUND OPERATORS
    DAVID, G
    JOURNE, JL
    ANNALS OF MATHEMATICS, 1984, 120 (02) : 371 - 397
  • [32] STRONGLY SINGULAR CALDERON-ZYGMUND OPERATORS AND THEIR COMMUTATORS
    Lin, Yan
    Lu, Shanzhen
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2008, 1 (01): : 31 - 49
  • [33] An Approximation Method for Convolution Calderon-Zygmund Operators
    Yu, Yunxia
    Yang, Zhanying
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [34] Bilinear Decompositions and Commutators of Calderon-Zygmund Operators
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 423 - 452
  • [35] Calderon-Zygmund operators on product Hardy spaces
    Han, Yongsheng
    Lee, Ming-Yi
    Lin, Chin-Cheng
    Lin, Ying-Chieh
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (08) : 2834 - 2861
  • [36] Calderon-Zygmund Operators Related to Jacobi Expansions
    Nowak, Adam
    Sjogren, Peter
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (04) : 717 - 749
  • [37] Calderon-Zygmund Operators on Weighted Hardy Spaces
    Lee, Ming-Yi
    POTENTIAL ANALYSIS, 2013, 38 (03) : 699 - 709
  • [38] On the boundedness of Calderon-Zygmund operators with monogenic kernels
    Mitrea, Donna
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (3-4) : 891 - 899
  • [39] Variation of Calderon-Zygmund operators with matrix weight
    Duong, Xuan Thinh
    Li, Ji
    Yang, Dongyong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (07)
  • [40] On the Separated Bumps Conjecture for Calderon-Zygmund Operators
    Lacey, Michael T.
    HOKKAIDO MATHEMATICAL JOURNAL, 2016, 45 (02) : 223 - 242