Calderon-Zygmund operators in the Bessel setting for all possible type indices

被引:12
|
作者
Castro, Alejandro J. [1 ]
Szarek, Tomasz Z. [2 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
[2] Polish Acad Sci, Inst Matemat, PL-00956 Warsaw, Poland
关键词
Bessel operator; Bessel semigroup; maximal operator; square function; multiplier; Riesz transform; Calderon-Zygmund operator; RIESZ TRANSFORMS; NORM INEQUALITIES; MULTIPLIERS; EXPANSIONS;
D O I
10.1007/s10114-014-2326-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that many harmonic analysis operators in the Bessel setting, including maximal operators, Littlewood-Paley-Stein type square functions, multipliers of Laplace or Laplace-Stieltjes transform type and Riesz transforms are, or can be viewed as, Caldern-Zygmund operators for all possible values of type parameter lambda in this context. This extends results existing in the literature, but being justified only for a restricted range of lambda.
引用
收藏
页码:637 / 648
页数:12
相关论文
共 50 条