Calderon-Zygmund operators on multiparameter Lipschitz spaces of homogeneous type

被引:2
|
作者
He, Shaoyong [1 ]
Chen, Jiecheng [2 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiparameter Lipschitz space; discrete Littlewood-Paley-Stein theory; product singular integral operator; space of homogeneous type; SINGULAR-INTEGRALS; MARCINKIEWICZ MULTIPLIERS; PRODUCT-SPACES; FLAG KERNELS; HARDY-SPACES; HP-THEORY; BOUNDEDNESS;
D O I
10.1515/forum-2021-0204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to establish a necessary and sufficient condition for the boundedness of general product singular integral operators introduced by Han, Li and Lin [Y. Han, J. Li and C.-C. Lin, Criterion of the L-2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 3, 845-907] on the multiparameter Lipschitz spaces of homogeneous type (M) over tilde = M-1 x . . . x M-n. Each factor space M-i, 1 <= i <= n, is a space of homogeneous type in the sense of Coifman and Weiss. These operators generalize those studied by Journe on the Euclidean space and include operators studied by Nagel and Stein on Carnot Caratheodory spaces. The main tool used here is the discrete Littlewood- Paley-Stein theory and almost orthogonality together with a density argument for the product Lipschitz spaces in the weak sense.
引用
收藏
页码:175 / 196
页数:22
相关论文
共 50 条
  • [1] Calderon-Zygmund Operators on Homogeneous Product Lipschitz Spaces
    Zheng, Taotao
    Chen, Jiecheng
    Dai, Jiawei
    He, Shaoyong
    Tao, Xiangxing
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 2033 - 2057
  • [2] The Boundedness of Calderon-Zygmund Operators on Lipschitz Spaces Over Spaces of Homogeneous Type
    Zheng, Taotao
    Li, Hongliang
    Tao, Xiangxing
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 653 - 669
  • [3] Algebra of Calderon-Zygmund operators on spaces of homogeneous type
    Han, YS
    Lin, CC
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (02): : 309 - 328
  • [4] Algebras of Calderon-Zygmund Operators on Spaces of Homogeneous Type
    Liao, Fanghui
    Wang, Yan
    Li, Zhengyang
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)
  • [5] LOGARITHMIC BUMP CONDITIONS FOR CALDERON-ZYGMUND OPERATORS ON SPACES OF HOMOGENEOUS TYPE
    Anderson, Theresa C.
    Cruz-Uribe, David
    Moen, Kabe
    [J]. PUBLICACIONS MATEMATIQUES, 2015, 59 (01) : 17 - 43
  • [6] Calderon-Zygmund Operators and Commutators in Spaces of Homogeneous Type: Weighted Inequalities
    Anderson, T. C.
    Damian, W.
    [J]. ANALYSIS MATHEMATICA, 2022, 48 (04) : 939 - 959
  • [7] Bilinear Calderon-Zygmund operators on Sobolev, BMO and Lipschitz spaces
    Wang, Dinghuai
    Zhou, Jiang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [8] BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS ON INHOMOGENEOUS PRODUCT LIPSCHITZ SPACES
    He, Shaoyong
    Zheng, Taotao
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (03) : 469 - 494
  • [9] Weighted endpoint estimates for the composition of Calderon-Zygmund operators on spaces of homogeneous type
    Liu, Dongli
    Zhao, Jiman
    [J]. COLLECTANEA MATHEMATICA, 2022, 73 (03) : 359 - 382
  • [10] A two weight inequality for Calderon-Zygmund operators on spaces of homogeneous type with applications
    Duong, Xuan Thinh
    Li, Ji
    Sawyer, Eric T.
    Vempati, Manasa N.
    Wick, Brett D.
    Yang, Dongyong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)