Calderon-Zygmund operators on multiparameter Lipschitz spaces of homogeneous type

被引:2
|
作者
He, Shaoyong [1 ]
Chen, Jiecheng [2 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiparameter Lipschitz space; discrete Littlewood-Paley-Stein theory; product singular integral operator; space of homogeneous type; SINGULAR-INTEGRALS; MARCINKIEWICZ MULTIPLIERS; PRODUCT-SPACES; FLAG KERNELS; HARDY-SPACES; HP-THEORY; BOUNDEDNESS;
D O I
10.1515/forum-2021-0204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to establish a necessary and sufficient condition for the boundedness of general product singular integral operators introduced by Han, Li and Lin [Y. Han, J. Li and C.-C. Lin, Criterion of the L-2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 3, 845-907] on the multiparameter Lipschitz spaces of homogeneous type (M) over tilde = M-1 x . . . x M-n. Each factor space M-i, 1 <= i <= n, is a space of homogeneous type in the sense of Coifman and Weiss. These operators generalize those studied by Journe on the Euclidean space and include operators studied by Nagel and Stein on Carnot Caratheodory spaces. The main tool used here is the discrete Littlewood- Paley-Stein theory and almost orthogonality together with a density argument for the product Lipschitz spaces in the weak sense.
引用
收藏
页码:175 / 196
页数:22
相关论文
共 50 条
  • [41] Multilinear Calderon-Zygmund operators on weighted Hardy spaces
    Li, Wenjuan
    Xue, Qingying
    Yabuta, Kozo
    [J]. STUDIA MATHEMATICA, 2010, 199 (01) : 1 - 16
  • [42] GENERALIZATIONS OF CALDERON-ZYGMUND OPERATORS
    YABUTA, K
    [J]. STUDIA MATHEMATICA, 1985, 82 (01) : 17 - 31
  • [43] On an extension of Calderon-Zygmund operators
    Cheng, LC
    Pan, YB
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) : 1079 - 1088
  • [44] Bilinear Calderon-Zygmund operators of type ω(t) on non-homogeneous space
    Zheng, Taotao
    Tao, Xiangxing
    Wu, Xiaomei
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [45] Exotic Calderon-Zygmund Operators
    Hytonen, Tuomas
    Li, Kangwei
    Martikainen, Henri
    Vuorinen, Emil
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)
  • [46] NEW CALDERON-ZYGMUND OPERATORS
    MEYER, Y
    [J]. ASTERISQUE, 1985, (131) : 237 - 254
  • [47] Weak type estimates for Calderon-Zygmund operators on Herz spaces at critical indexes
    Komori, Y
    [J]. MATHEMATISCHE NACHRICHTEN, 2003, 259 : 42 - 50
  • [48] Weak type estimates and Cotlar inequalities for Calderon-Zygmund operators on nonhomogeneous spaces
    Nazarov, F
    Treil, S
    Volberg, A
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (09) : 463 - 487
  • [49] Boundedness of θ-Type Calderon-Zygmund Operators and Commutators in the Generalized Weighted Morrey Spaces
    Wang, Hua
    [J]. JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [50] MULTILINEAR STRONGLY SINGULAR CALDERON-ZYGMUND OPERATORS AND COMMUTATORS ON MORREY TYPE SPACES
    Lin, Yan
    Yan, Huihui
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (02): : 351 - 375