BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS ON INHOMOGENEOUS PRODUCT LIPSCHITZ SPACES

被引:0
|
作者
He, Shaoyong [1 ]
Zheng, Taotao [2 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Calderon-Zygmund operator; inhomogeneous product Lipschitz space; Littlewood-Paley theory; MARCINKIEWICZ MULTIPLIERS; SINGULAR-INTEGRALS; MULTIPARAMETER STRUCTURE; FLAG KERNELS; HP-THEORY; CRITERION;
D O I
10.4134/JKMS.j210115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the boundedness of a class of inhomogeneous Journe ''s product singular integral operators on the inhomogeneous product Lipschitz spaces. The consideration of such inhomogeneous Journe ''s product singular integral operators is motivated by the study of the multi-parameter pseudo-differential operators. The key idea used here is to develop the Littlewood-Paley theory for the inhomogeneous product spaces which includes the characterization of a special inhomogeneous product Besov space and a density argument for the inhomogeneous product Lipschitz spaces in the weak sense.
引用
收藏
页码:469 / 494
页数:26
相关论文
共 50 条
  • [1] HP boundedness of Calderon-Zygmund operators on product spaces
    Han, YS
    Yang, DC
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) : 869 - 881
  • [2] Calderon-Zygmund Operators on Homogeneous Product Lipschitz Spaces
    Zheng, Taotao
    Chen, Jiecheng
    Dai, Jiawei
    He, Shaoyong
    Tao, Xiangxing
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 2033 - 2057
  • [3] The Boundedness of Calderon-Zygmund Operators on Lipschitz Spaces Over Spaces of Homogeneous Type
    Zheng, Taotao
    Li, Hongliang
    Tao, Xiangxing
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 653 - 669
  • [4] BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS ON WEIGHTED PRODUCT HARDY SPACES
    Lee, Ming-Yi
    [J]. JOURNAL OF OPERATOR THEORY, 2014, 72 (01) : 115 - 133
  • [5] Calderon-Zygmund operators on product Hardy spaces
    Han, Yongsheng
    Lee, Ming-Yi
    Lin, Chin-Cheng
    Lin, Ying-Chieh
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (08) : 2834 - 2861
  • [6] Bilinear Calderon-Zygmund operators on Sobolev, BMO and Lipschitz spaces
    Wang, Dinghuai
    Zhou, Jiang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [7] BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS ON BESOV SPACES AND ITS APPLICATION
    Yang Zhanying
    [J]. ACTA MATHEMATICA SCIENTIA, 2010, 30 (04) : 1338 - 1346
  • [8] Calderon-Zygmund operators on multiparameter Lipschitz spaces of homogeneous type
    He, Shaoyong
    Chen, Jiecheng
    [J]. FORUM MATHEMATICUM, 2022, 34 (01) : 175 - 196
  • [9] A BOUNDEDNESS CRITERION FOR GENERALIZED CALDERON-ZYGMUND OPERATORS
    DAVID, G
    JOURNE, JL
    [J]. ANNALS OF MATHEMATICS, 1984, 120 (02) : 371 - 397
  • [10] Calderon-Zygmund operators on Lipschitz spaces over RD spaces1
    Li, Hongliang
    Zheng, Taotao
    [J]. QUAESTIONES MATHEMATICAE, 2021, 44 (04) : 473 - 494