Calderon-Zygmund operators on product Hardy spaces

被引:40
|
作者
Han, Yongsheng [2 ]
Lee, Ming-Yi [1 ]
Lin, Chin-Cheng [1 ]
Lin, Ying-Chieh [1 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 320, Taiwan
[2] Auburn Univ, Dept Math, Auburn, AL 36849 USA
关键词
Calderon-Zygmund operators; Journe's class; Littlewood-Paley function; Product Hardy spaces;
D O I
10.1016/j.jfa.2009.10.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a product Calderon-Zygmund singular integral introduced by Journe. Using an elegant rectangle atomic decomposition of H-p (R-n x R-m) and Journe's geometric covering lemma, R. Fefferman proved the remarkable H-p(R-n x R-m) - L-p(R-n x R-m) boundedness of T. In this paper we apply vector-valued singular integral, Calderon's identity, Littlewood-Paley theory and the almost orthogonality together with Fefferman's rectangle atomic decomposition and Journe's covering lemma to show that T is bounded on product H-p(R-n x R-m) for max{n/n+epsilon, m/m+epsilon} < p <= 1 if and only if T-1*(1) = T-2*(1) = 0, where epsilon is the regularity exponent of the kernel of T. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2834 / 2861
页数:28
相关论文
共 50 条