A two weight inequality for Calderon-Zygmund operators on spaces of homogeneous type with applications

被引:5
|
作者
Duong, Xuan Thinh [1 ]
Li, Ji [1 ]
Sawyer, Eric T. [2 ]
Vempati, Manasa N. [3 ]
Wick, Brett D. [3 ]
Yang, Dongyong [4 ]
机构
[1] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
[2] McMaster Univ, Dept Math, Hamilton, ON, Canada
[3] Washington Univ, Dept Math, One Brookings Dr, St Louis, MO 63130 USA
[4] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Two weight inequality; Testing conditions; Space of homogeneous type; Calderon-Zygmund operator; Haar basis; REAL VARIABLE CHARACTERIZATION; HILBERT TRANSFORM; 2-WEIGHT INEQUALITY; NORM INEQUALITIES; INTEGRALS; THEOREM;
D O I
10.1016/j.jfa.2021.109190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a space of homogeneous type in the sense of Coifman and Weiss, i.e. d is a quasi metric on X and mu is a positive measure satisfying the doubling condition. Suppose that u and v are two locally finite positive Borel measures on ( X, d, mu). Subject to the pair of weights satisfying a side condition, we characterize the boundedness of a Calderon-Zygmund operator T from L-2(u) to L-2(v) in terms of the A(2) condition and two testing conditions. For every cube B subset of X, we have the following testing conditions, with 1(B) taken as the indicator of B parallel to T(u1(B))parallel to L-2(B,v) <= T parallel to 1(B)parallel to L-2(u), parallel to T*(v1(B))parallel to L-2(B,u) <= T parallel to 1(B)parallel to L-2(v). The proof uses stopping cubes and corona decompositions originating in work of Nazarov, Treil and Volberg, along with the pivotal side condition. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:65
相关论文
共 50 条
  • [1] Algebra of Calderon-Zygmund operators on spaces of homogeneous type
    Han, YS
    Lin, CC
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (02): : 309 - 328
  • [2] Algebras of Calderon-Zygmund Operators on Spaces of Homogeneous Type
    Liao, Fanghui
    Wang, Yan
    Li, Zhengyang
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)
  • [3] Calderon-Zygmund operators on multiparameter Lipschitz spaces of homogeneous type
    He, Shaoyong
    Chen, Jiecheng
    [J]. FORUM MATHEMATICUM, 2022, 34 (01) : 175 - 196
  • [4] Two-weight norm inequality for Calderon-Zygmund operators
    Rakotondratsimba, Y
    [J]. ACTA MATHEMATICA HUNGARICA, 1998, 80 (1-2) : 39 - 54
  • [5] The Boundedness of Calderon-Zygmund Operators on Lipschitz Spaces Over Spaces of Homogeneous Type
    Zheng, Taotao
    Li, Hongliang
    Tao, Xiangxing
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 653 - 669
  • [6] LOGARITHMIC BUMP CONDITIONS FOR CALDERON-ZYGMUND OPERATORS ON SPACES OF HOMOGENEOUS TYPE
    Anderson, Theresa C.
    Cruz-Uribe, David
    Moen, Kabe
    [J]. PUBLICACIONS MATEMATIQUES, 2015, 59 (01) : 17 - 43
  • [7] Calderon-Zygmund Operators and Commutators in Spaces of Homogeneous Type: Weighted Inequalities
    Anderson, T. C.
    Damian, W.
    [J]. ANALYSIS MATHEMATICA, 2022, 48 (04) : 939 - 959
  • [8] Calderon-Zygmund Operators on Homogeneous Product Lipschitz Spaces
    Zheng, Taotao
    Chen, Jiecheng
    Dai, Jiawei
    He, Shaoyong
    Tao, Xiangxing
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 2033 - 2057
  • [9] Besov and Triebel-Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderon-Zygmund operators
    Wang, Fan
    Han, Yongsheng
    He, Ziyi
    Yang, Dachun
    [J]. DISSERTATIONES MATHEMATICAE, 2021, 565 : 1 - 113
  • [10] Commutators of Calderon-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrodinger operators
    Liu Yu
    Huang JiZheng
    Dong JianFeng
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (09) : 1895 - 1913