Tunable-cavity QED with phase qubits

被引:27
|
作者
Whittaker, J. D. [1 ]
da Silva, F. C. S. [1 ]
Allman, M. S. [1 ]
Lecocq, F. [1 ]
Cicak, K. [1 ]
Sirois, A. J. [1 ]
Teufel, J. D. [1 ]
Aumentado, J. [1 ]
Simmonds, R. W. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 02期
关键词
SUPERCONDUCTING CIRCUITS; JOSEPHSON-JUNCTION; QUANTUM PROCESSOR; STATE;
D O I
10.1103/PhysRevB.90.024513
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe a tunable-cavity quantum electrodynamics (QED) architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both microwave readout of tunneling and dispersive measurements of the qubit. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling, and detuning. A tunable-cavity frequency provides a way to strongly vary both the qubit-cavity detuning and coupling strength, which can reduce Purcell losses, cavity-induced dephasing of the qubit, and residual bus coupling for a system with multiple qubits. With our qubit-cavity system, we show that dynamic control over the cavity frequency enables one to avoid Purcell losses during coherent qubit evolutions and optimize state readout during qubit measurements. The maximum qubit decay time T-1 = 1.5 mu s is found to be limited by surface dielectric losses from a design geometry similar to planar transmon qubits.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Tunable quantum entanglement of three qubits in a nonstationary cavity
    Amico, Mirko
    Berman, Oleg L.
    Kezerashvili, Roman Ya.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [22] Scheme for the implementation of the optimal economical phase-covariant quantum cloning machine with SQUID qubits in cavity QED
    Yu, Long-Bao
    Zhang, Wen-Hai
    Ye, Liu
    PHYSICS LETTERS A, 2007, 365 (1-2) : 74 - 78
  • [23] Cavity QED of NV Centers with a Tunable Silica Resonator
    Dinyari, Khodadad Nima
    Barbour, Russell
    Golter, Andrew
    Wang, Hailin
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [24] Tunable joint measurements in the dispersive regime of cavity QED
    Lalumiere, Kevin
    Gambetta, J. M.
    Blais, Alexandre
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [25] Tunable coupling cavity QED with a superconducting artificial atom
    Srinivasan, Srikanth J.
    Hoffman, Anthony J.
    Liu, Yanbing
    Gambetta, Jay M.
    Houck, Andrew A.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [26] Feasible schemes for quantum swap gates of optical qubits via cavity QED
    Tang Shi-Qing
    Zhang Deng-Yu
    Wang Xin-Wen
    Xie Li-Jun
    Gao Feng
    CHINESE PHYSICS B, 2011, 20 (04)
  • [27] Nonreciprocal Entanglement and Blockade Between Two Qubits in a Spinning Cavity QED System
    Huang, Kai-Wei
    Wang, Xin
    Xiong, Hao
    ADVANCED QUANTUM TECHNOLOGIES, 2025,
  • [28] Feasible schemes for quantum swap gates of optical qubits via cavity QED
    唐世清
    张登玉
    汪新文
    谢利军
    高峰
    Chinese Physics B, 2011, (04) : 74 - 79
  • [29] Cavity-QED simulation of a quantum metamaterial with tunable disorder
    Mazhorin, Grigoriy S.
    Moskalenko, Ilya N.
    Besedin, Ilya S.
    Shapiro, Dmitriy S.
    Remizov, Sergey, V
    Pogosov, Walter, V
    Moskalev, Dmitry O.
    Pishchimova, Anastasia A.
    Dobronosova, Alina A.
    Rodionov, I. A.
    Ustinov, Alexey, V
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [30] Tunable single quantum dot nanocavities for cavity QED experiments
    Kaniber, M.
    Laucht, A.
    Neumann, A.
    Bichler, M.
    Amann, M-C
    Finley, J. J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (45)