Tunable-cavity QED with phase qubits

被引:27
|
作者
Whittaker, J. D. [1 ]
da Silva, F. C. S. [1 ]
Allman, M. S. [1 ]
Lecocq, F. [1 ]
Cicak, K. [1 ]
Sirois, A. J. [1 ]
Teufel, J. D. [1 ]
Aumentado, J. [1 ]
Simmonds, R. W. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 02期
关键词
SUPERCONDUCTING CIRCUITS; JOSEPHSON-JUNCTION; QUANTUM PROCESSOR; STATE;
D O I
10.1103/PhysRevB.90.024513
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe a tunable-cavity quantum electrodynamics (QED) architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both microwave readout of tunneling and dispersive measurements of the qubit. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling, and detuning. A tunable-cavity frequency provides a way to strongly vary both the qubit-cavity detuning and coupling strength, which can reduce Purcell losses, cavity-induced dephasing of the qubit, and residual bus coupling for a system with multiple qubits. With our qubit-cavity system, we show that dynamic control over the cavity frequency enables one to avoid Purcell losses during coherent qubit evolutions and optimize state readout during qubit measurements. The maximum qubit decay time T-1 = 1.5 mu s is found to be limited by surface dielectric losses from a design geometry similar to planar transmon qubits.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Analysis of a tunable coupler for superconducting phase qubits
    Pinto, Ricardo A.
    Korotkov, Alexander N.
    Geller, Michael R.
    Shumeiko, Vitaly S.
    Martinis, John M.
    PHYSICAL REVIEW B, 2010, 82 (10)
  • [32] Interaction of Josephson qubits with strong QED cavity modes: Dynamical entanglement transfer and navigation
    Falci, G
    Kim, M
    Paternostro, M
    Palma, GM
    Plastina, F
    REALIZING CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPINTRONICS, 2005, : 269 - 274
  • [33] Scheme for Remote Implementation of Partially Unknown Quantum Operation of Two Qubits in Cavity QED
    QIU Liang WANG An-Min Quantum Theory Group
    CommunicationsinTheoreticalPhysics, 2008, 50 (11) : 1233 - 1236
  • [34] Phase Transition of Light in Cavity QED Lattices
    Schiro, M.
    Bordyuh, M.
    Oeztop, B.
    Tuereci, H. E.
    PHYSICAL REVIEW LETTERS, 2012, 109 (05)
  • [35] Scheme for Remote Implementation of Partially Unknown Quantum Operation of Two Qubits in Cavity QED
    Qiu Liang
    Wang An-Min
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (05) : 1233 - 1236
  • [36] Influence of Cavity Decay on Phase Distribution and Rabi Flopping in Cavity QED
    Arpita Ghosh
    P. K. Das
    International Journal of Theoretical Physics, 2008, 47 : 1731 - 1741
  • [37] Non-Hermitian Waveguide Cavity QED with Tunable Atomic Mirrors
    Nie W.
    Shi T.
    Liu Y.-X.
    Nori F.
    Physical Review Letters, 2023, 131 (10)
  • [38] Nano-Cavity QED with Tunable Nano-Tip Interaction
    May, Molly A.
    Fialkow, David
    Wu, Tong
    Park, Kyoung-Duck
    Leng, Haixu
    Kropp, Jaron A.
    Gougousi, Theodosia
    Lalanne, Philippe
    Pelton, Matthew
    Raschke, Markus B.
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (02)
  • [39] Influence of cavity decay on phase distribution and rabi flopping in cavity QED
    Ghosh, Arpita
    Das, P. K.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (06) : 1731 - 1741
  • [40] A tunable high-Q millimeter wave cavity for hybrid circuit and cavity QED experiments
    Suleymanzade, Aziza
    Anferov, Alexander
    Stone, Mark
    Naik, Ravi K.
    Oriani, Andrew
    Simon, Jonathan
    Schuster, David
    APPLIED PHYSICS LETTERS, 2020, 116 (10)