A monotone scheme for Hamilton-Jacobi equations via the nonstandard finite difference method

被引:6
|
作者
Anguelov, Roumen [1 ]
Lubuma, Jean M. -S. [1 ]
Minani, Froduald [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
关键词
nonstandard finite difference method; Hamilton-Jacobi equation; monotone scheme; finite element method;
D O I
10.1002/mma.1148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A usual way of approximating Hamilton-Jacobi equations is to couple space finite element discretization with time finite difference discretization. This classical approach leads to a severe restriction on the time step size for the scheme to be monotone. In this paper, we couple the finite element method with the nonstandard finite difference method, which is based on Mickens' rule of nonlocal approximation. The scheme obtained in this way is unconditionally monotone. The convergence of the new method is discussed and numerical results that support the theory are provided. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [41] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Han, Wonho
    Kim, Kwangil
    Hong, Unhyok
    APPLICATIONS OF MATHEMATICS, 2023, 68 (05) : 661 - 684
  • [42] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Wonho Han
    Kwangil Kim
    Unhyok Hong
    Applications of Mathematics, 2023, 68 : 661 - 684
  • [43] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Han, Wonho
    Kim, Kwangil
    Hong, Unhyok
    Applications of Mathematics, 2023, 68 (05): : 661 - 684
  • [44] A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic
    Costeseque, Guillaume
    Lebacque, Jean-Patrick
    Monneau, Regis
    NUMERISCHE MATHEMATIK, 2015, 129 (03) : 405 - 447
  • [45] High order finite difference hermite WENO schemes for the Hamilton-Jacobi equations on unstructured meshes
    Zheng, Feng
    Shu, Chi-Wang
    Qiu, Jianxian
    COMPUTERS & FLUIDS, 2019, 183 (53-65) : 53 - 65
  • [46] Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations
    Lepsky, O
    Hu, CQ
    Shu, CW
    APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 423 - 434
  • [47] A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations
    Fengyan Li
    Sergey Yakovlev
    Journal of Scientific Computing, 2010, 45 : 404 - 428
  • [48] A hermite method with a discontinuity sensor for Hamilton-Jacobi equations
    Alvarez Loya, Allen
    Appelö, Daniel
    arXiv, 2021,
  • [49] APPROXIMATION SCHEMAS AND FINITE-DIFFERENCE OPERATORS FOR CONSTRUCTING GENERALIZED SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    TARASYEV, AM
    USPENSKIY, AA
    USHAKOV, VN
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1995, 33 (06) : 127 - 139
  • [50] HAMILTON-JACOBI EQUATIONS FOR FINITE-RANK MATRIX INFERENCE
    Mourrat, J-C
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (05): : 2234 - 2260