A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations

被引:1
|
作者
Fengyan Li
Sergey Yakovlev
机构
[1] Rensselaer Polytechnic Institute,Department of Mathematical Sciences
来源
关键词
Discontinuous Galerkin method; Central scheme; Hamilton-Jacobi equation; Viscosity solution; High order accuracy;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a central discontinuous Galerkin method is proposed to solve for the viscosity solutions of Hamilton-Jacobi equations. Central discontinuous Galerkin methods were originally introduced for hyperbolic conservation laws. They combine the central scheme and the discontinuous Galerkin method and therefore carry many features of both methods. Since Hamilton-Jacobi equations in general are not in the divergence form, it is not straightforward to design a discontinuous Galerkin method to directly solve such equations. By recognizing and following a “weighted-residual” or “stabilization-based” formulation of central discontinuous Galerkin methods when applied to hyperbolic conservation laws, we design a high order numerical method for Hamilton-Jacobi equations. The L2 stability and the error estimate are established for the proposed method when the Hamiltonians are linear. The overall performance of the method in approximating the viscosity solutions of general Hamilton-Jacobi equations are demonstrated through extensive numerical experiments, which involve linear, nonlinear, smooth, nonsmooth, convex, or nonconvex Hamiltonians.
引用
收藏
页码:404 / 428
页数:24
相关论文
共 50 条