A monotone scheme for Hamilton-Jacobi equations via the nonstandard finite difference method

被引:6
|
作者
Anguelov, Roumen [1 ]
Lubuma, Jean M. -S. [1 ]
Minani, Froduald [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
关键词
nonstandard finite difference method; Hamilton-Jacobi equation; monotone scheme; finite element method;
D O I
10.1002/mma.1148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A usual way of approximating Hamilton-Jacobi equations is to couple space finite element discretization with time finite difference discretization. This classical approach leads to a severe restriction on the time step size for the scheme to be monotone. In this paper, we couple the finite element method with the nonstandard finite difference method, which is based on Mickens' rule of nonlocal approximation. The scheme obtained in this way is unconditionally monotone. The convergence of the new method is discussed and numerical results that support the theory are provided. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [21] Finite volume schemes for Hamilton-Jacobi equations
    Kossioris, G
    Makridakis, C
    Souganidis, PE
    NUMERISCHE MATHEMATIK, 1999, 83 (03) : 427 - 442
  • [22] Hybrid Finite Difference Fifth-Order Multi-Resolution WENO Scheme for Hamilton-Jacobi Equations
    Wang, Zhenming
    Zhu, Jun
    Tian, Linlin
    Zhao, Ning
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (03) : 609 - 632
  • [23] REGULARITY FOR HAMILTON-JACOBI EQUATIONS VIA APPROXIMATION
    HONG, BI
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 51 (02) : 195 - 213
  • [24] A Hybrid Finite Difference WENO-ZQ Fast Sweeping Method for Static Hamilton-Jacobi Equations
    Ren, Yupeng
    Xiong, Tao
    Qiu, Jianxian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [25] The Carleman convexification method for Hamilton-Jacobi equations
    Le, Huynh P. N.
    Le, Thuy T.
    Nguyen, Loc H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 159 : 173 - 185
  • [26] Gradients of local linear hulls in finite-difference operators for the Hamilton-Jacobi equations
    Melnikova, NV
    Tarasyev, AM
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1997, 61 (03): : 409 - 417
  • [27] Homogenization of Monotone Systems of Non-Coercive Hamilton-Jacobi Equations
    Junfang Wang
    Peihao Zhao
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 285 - 300
  • [28] VALUE ITERATION CONVERGENCE OF ε-MONOTONE SCHEMES FOR STATIONARY HAMILTON-JACOBI EQUATIONS
    Bokanowski, Olivier
    Falcone, Maurizio
    Ferretti, Roberto
    Gruene, Lars
    Kalise, Dante
    Zidani, Hasnaa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 4041 - 4070
  • [29] HOMOGENIZATION OF MONOTONE SYSTEMS OF NON-COERCIVE HAMILTON-JACOBI EQUATIONS
    Wang, Junfang
    Zhao, Peihao
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 285 - 300
  • [30] A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations
    Cheng, Yingda
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) : 398 - 415