A machine learning method for real-time numerical simulations of cardiac electromechanics

被引:25
|
作者
Regazzoni, F. [1 ]
Salvador, M. [1 ]
Dede, L. [1 ]
Quarteroni, A. [1 ,2 ]
机构
[1] Politecn Milan, MOX Dipartimento Matemat, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Ecole Polytech Fed Lausanne, Math Inst, Av Piccard, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
Cardiac electromechanics; Machine learning; Reduced order modeling; Global sensitivity analysis; Bayesian parameter estimation; SENSITIVITY-ANALYSIS; MODELS; CONTRACTION; UNCERTAINTY;
D O I
10.1016/j.cma.2022.114825
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a machine learning-based method to build a system of differential equations that approximates the dynamics of 3D electromechanical models for the human heart, accounting for the dependence on a set of parameters. Specifically, our method permits to create a reduced-order model (ROM), written as a system of Ordinary Differential Equations (ODEs) wherein the forcing term, given by the right-hand side, consists of an Artificial Neural Network (ANN), that possibly depends on a set of parameters associated with the electromechanical model to be surrogated. This method is non-intrusive, as it only requires a collection of pressure and volume transients obtained from the full-order model (FOM) of cardiac electromechanics. Once trained, the ANN-based ROM can be coupled with hemodynamic models for the blood circulation external to the heart, in the same manner as the original electromechanical model, but at a dramatically lower computational cost. Indeed, our method allows for real-time numerical simulations of the cardiac function. Our results show that the ANN-based ROM is accurate with respect to the FOM (relative error between 10(-3) and 10(-2) for biomarkers of clinical interest), while requiring very small training datasets (30-40 samples). We demonstrate the effectiveness of the proposed method on two relevant contexts in cardiac modeling. First, we employ the ANN-based ROM to perform a global sensitivity analysis on both the electromechanical and hemodynamic models. Second, we perform a Bayesian estimation of two parameters starting from noisy measurements of two scalar outputs. In both these cases, replacing the FOM of cardiac electromechanics with the ANN-based ROM makes it possible to perform in a few hours of computational time all the numerical simulations that would be otherwise unaffordable, because of their overwhelming computational cost, if carried out with the FOM. As a matter of fact, our ANN-based ROM is able to speedup the numerical simulations by more than three orders of magnitude. (C)& nbsp;2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Real-time particle pollution sensing using machine learning
    Grant-Jacob, James A.
    Mackay, Benita S.
    Baker, James A. G.
    Heath, Daniel J.
    Xie, Yunhui
    Loxham, Matthew
    Eason, Robert W.
    Mills, Ben
    OPTICS EXPRESS, 2018, 26 (21): : 27237 - 27246
  • [42] Scalable Real-Time Attributes Responsive Extreme Learning Machine
    Wang, Hongbo
    Yao, Yuejuan
    Liu, Xi
    Tu, Xuyan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2020, 13 (01) : 1101 - 1107
  • [43] Real-Time Prediction for IC Aging Based on Machine Learning
    Huang, Ke
    Zhang, Xinqiao
    Karimi, Naghmeh
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (12) : 4756 - 4764
  • [44] Tiny Machine Learning for Real-time Postural Stability Analysis
    Adin, Veysi
    Zhang, Yuxuan
    Ando, Bruno
    Oelmann, Bengt
    Bader, Sebastian
    2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS, 2023,
  • [45] A MACHINE LEARNING FRAMEWORK FOR REAL-TIME TRAFFIC DENSITY DETECTION
    Chen, Jing
    Tan, Evan
    Li, Zhidong
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2009, 23 (07) : 1265 - 1284
  • [46] Real-Time Adaptive Tractor Ride Comfort Adjustment System Based on Machine Learning Method
    Tian, Hu
    Ji, Anping
    IEEE ACCESS, 2025, 13 : 3274 - 3283
  • [47] Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning
    Cheng, Liang
    Guo, Haijing
    Sun, Lingyan
    Yang, Chao
    Sun, Feng
    Li, Jinshan
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2024, 8 (04):
  • [48] Machine Learning-Based Real-Time Metasurface Reconfiguration
    Su, Feng
    Luong, David
    Lam, Ian
    Rajan, Sreeraman
    Gupta, Shulabh
    2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS, 2023,
  • [49] Streaming Machine Learning For Real-time Gas Concentration Prediction
    Wu, Haibo
    Shi, Shiliang
    Nian, Qifeng
    2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 42 - 46
  • [50] Real-time Tweets Analysis using Machine Learning and Bigdata
    Reddy, P Nandieswar
    Sai Aswath, S.
    Alapati, Rithvika
    Radha, D.
    Proceedings of NKCon 2024 - 3rd Edition of IEEE NKSS's Flagship International Conference: Digital Transformation: Unleashing the Power of Information, 2024,