AN UPPER BOUND ON THE FRACTIONAL CHROMATIC NUMBER OF TRIANGLE-FREE SUBCUBIC GRAPHS

被引:2
|
作者
Liu, Chun-Hung [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
fractional chromatic number; triangle-free graphs; subcubic graphs;
D O I
10.1137/120900678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An (a : b)-coloring of a graph G is a function f which maps the vertices of G into b-element subsets of some set of size a in such a way that f(u) is disjoint from f(v) for every two adjacent vertices u and v in G. The fractional chromatic number chi(f)(G) is the infimum of a/b over all pairs of positive integers a, b such that G has an (a : b)-coloring. Heckman and Thomas conjectured that the fractional chromatic number of every triangle-free graph G of maximum degree at most three is at most 2.8. Hatami and Zhu proved that chi(f)(G) <= 3 - 3/64 approximate to 2.953. Lu and Peng improved the bound to chi(f) (G) <= 3 - 3/43 approximate to 2.930. Recently, Ferguson, Kaiser, and Kral' proved that chi(f) (G) <= 32/11 approximate to 2.909. In this paper, we prove that chi(f) (G) <= 43/15 approximate to 2.867.
引用
收藏
页码:1102 / 1136
页数:35
相关论文
共 50 条
  • [11] STAR CHROMATIC NUMBER OF TRIANGLE-FREE PLANAR GRAPHS
    GAO, GG
    APPLIED MATHEMATICS LETTERS, 1994, 7 (01) : 75 - 78
  • [12] Bipartite subgraphs of triangle-free subcubic graphs
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (01) : 62 - 83
  • [13] Bipartite density of triangle-free subcubic graphs
    Zhu, Xuding
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 710 - 714
  • [14] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Arkadiusz Pawlik
    Jakub Kozik
    Tomasz Krawczyk
    Michał Lasoń
    Piotr Micek
    William T. Trotter
    Bartosz Walczak
    Discrete & Computational Geometry, 2013, 50 : 714 - 726
  • [15] On the chromatic number of triangle-free graphs of large minimum degree
    Thomassen, C
    COMBINATORICA, 2002, 22 (04) : 591 - 596
  • [16] Triangle-free graphs with large chromatic number and no induced wheel
    Davies, James
    JOURNAL OF GRAPH THEORY, 2023, 103 (01) : 112 - 118
  • [17] On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree
    Carsten Thomassen
    Combinatorica, 2002, 22 : 591 - 596
  • [18] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 714 - 726
  • [19] Triangle-free subcubic graphs with minimum bipartite density
    Xu, Baogang
    Yu, Xingxing
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (03) : 516 - 537
  • [20] The chromatic number of triangle-free and broom-free graphs in terms of the number of vertices
    Matsumoto, Naoki
    Tanaka, Minako
    AEQUATIONES MATHEMATICAE, 2021, 95 (02) : 319 - 328