CONFORMAL BLOCKS AND RATIONAL NORMAL CURVES

被引:15
|
作者
Giansiracusa, Noah [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
MODULI SPACES; GEOMETRY; POLYGONS;
D O I
10.1090/S1056-3911-2013-00601-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Chow quotient parameterizing configurations of n points in P-d which generically lie on a rational normal curve is isomorphic to (M) over bar (0,n), generalizing the well-known d = 1 result of Kapranov. In particular, (M) over bar (0,n) admits birational morphisms to all the corresponding geometric invariant theory (GIT) quotients. For symmetric linearizations, the polarization on each GIT quotient pulls back to a divisor that spans the same extremal ray in the symmetric nef cone of (M) over bar (0,n) as a conformal blocks line bundle. A symmetry in conformal blocks implies a duality of point-configurations that comes from Gale duality and generalizes a result of Goppa in algebraic coding theory. In a suitable sense, (M) over bar (0,2m) is fixed pointwise by the Gale transform when d = m - 1 so stable curves correspond to self-associated configurations.
引用
收藏
页码:773 / 793
页数:21
相关论文
共 50 条
  • [31] Normal bundles of rational curves in projective spaces
    Ran, Ziv
    ASIAN JOURNAL OF MATHEMATICS, 2007, 11 (04) : 567 - 608
  • [32] Dessins d'enfants, Seiberg-Witten curves and conformal blocks
    Bao, Jiakang
    Foda, Omar
    He, Yang-Hui
    Hirst, Edward
    Read, James
    Xiao, Yan
    Yagi, Futoshi
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [33] Conformal blocks on elliptic curves and the Knizhnik-Zamolodchikov-Bernard equations
    Felder, G
    Wieczerkowski, C
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (01) : 133 - 161
  • [34] Dessins d’enfants, Seiberg-Witten curves and conformal blocks
    Jiakang Bao
    Omar Foda
    Yang-Hui He
    Edward Hirst
    James Read
    Yan Xiao
    Futoshi Yagi
    Journal of High Energy Physics, 2021
  • [35] Resolutions of general canonical curves on rational normal scrolls
    Bopp, Christian
    Hoff, Michael
    ARCHIV DER MATHEMATIK, 2015, 105 (03) : 239 - 249
  • [36] Regularity and symbolic defect of points on rational normal curves
    Jafarloo, Iman Bahmani
    Malara, Grzegorz
    PERIODICA MATHEMATICA HUNGARICA, 2023, 87 (02) : 508 - 519
  • [37] Regularity and symbolic defect of points on rational normal curves
    Iman Bahmani Jafarloo
    Grzegorz Malara
    Periodica Mathematica Hungarica, 2023, 87 : 508 - 519
  • [38] ON THE NORMAL-BUNDLES OF RATIONAL SPACE-CURVES
    KAJI, H
    MATHEMATISCHE ANNALEN, 1985, 273 (01) : 163 - 176
  • [39] On curves of small degree on a normal rational surface scroll
    Schenzel, P
    COMMUTATIVE ALGEBRA, SINGULARITIES AND COMPUTER ALGEBRA, 2003, 115 : 225 - 239
  • [40] Projective Varieties Swept Out by Rational Normal Curves
    Ballico, Edoardo
    Munoz, Roberto
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (11) : 4257 - 4262