Resolutions of general canonical curves on rational normal scrolls

被引:6
|
作者
Bopp, Christian [1 ]
Hoff, Michael [1 ]
机构
[1] Univ Saarland, D-66123 Saarbrucken, Germany
关键词
Syzygy modules; Relative canonical resolution; Balancedness; LINEAR SERIES;
D O I
10.1007/s00013-015-0794-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C subset of Pg-1 be a general curve of genus g, and let k be a positive integer such that the Brill-Noether number rho(g, k, 1) >= 0 and g > k + 1. The aim of this short note is to study the relative canonical resolution of C on a rational normal scroll swept out by a g(k)(1) = vertical bar L vertical bar with L is an element of W-k(1)(C) general. We show that the bundle of quadrics appearing in the relative canonical resolution is unbalanced if and only if rho > 0 and (k - rho - 7/2)(2) - 2k + 23/4 > 0.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 50 条
  • [1] Resolutions of general canonical curves on rational normal scrolls
    Christian Bopp
    Michael Hoff
    Archiv der Mathematik, 2015, 105 : 239 - 249
  • [2] Curves with canonical models on scrolls
    Lara, Danielle
    Marchesi, Simone
    Martins, Renato Vidal
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (05)
  • [3] On curves on rational surface scrolls
    Martens, Gerriet
    ARCHIV DER MATHEMATIK, 2019, 112 (05) : 489 - 495
  • [4] On curves on rational surface scrolls
    Gerriet Martens
    Archiv der Mathematik, 2019, 112 : 489 - 495
  • [5] Special scrolls and involutions on canonical curves
    Welchman, WG
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1936, 40 : 143 - 188
  • [6] On Linear Systems of Curves on Rational Scrolls
    Antonio Laface
    Geometriae Dedicata, 2002, 90 : 127 - 144
  • [7] On linear systems of curves on rational scrolls
    Laface, A
    GEOMETRIAE DEDICATA, 2002, 90 (01) : 127 - 144
  • [8] A NOTE ON RATIONAL NORMAL SCROLLS
    DIGENNARO, V
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1994, 8A (03): : 449 - 460
  • [9] Divisors on rational normal scrolls
    Kustin, Andrew R.
    Polini, Claudia
    Ulrich, Bernd
    JOURNAL OF ALGEBRA, 2009, 322 (05) : 1748 - 1773
  • [10] A NOTE ON RATIONAL NORMAL SCROLLS
    Barile, Margherita
    JOURNAL OF COMMUTATIVE ALGEBRA, 2017, 9 (01) : 21 - 29