Dessins d'enfants, Seiberg-Witten curves and conformal blocks

被引:3
|
作者
Bao, Jiakang [1 ]
Foda, Omar [2 ]
He, Yang-Hui [1 ,3 ,4 ,5 ]
Hirst, Edward [1 ]
Read, James [6 ]
Xiao, Yan [7 ]
Yagi, Futoshi [8 ]
机构
[1] City Univ London, Dept Math, London EC1V 0HB, England
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[3] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
[4] London Inst Math Sci, 35a South St, London W1K 2XF, England
[5] NanKai Univ, Sch Phys, Tianjin 300071, Peoples R China
[6] Univ Oxford, Pembroke Coll, Oxford OX1 1DW, England
[7] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[8] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Sichuan, Peoples R China
关键词
Conformal Field Theory; Differential and Algebraic Geometry; Supersymmetric Gauge Theory; FIELD-THEORIES; SYMMETRY; DUALITY;
D O I
10.1007/JHEP05(2021)065
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show how to map Grothendieck's dessins d'enfants to algebraic curves as Seiberg-Witten curves, then use the mirror map and the AGT map to obtain the corresponding 4d N = 2 supersymmetric instanton partition functions and 2d Virasoro conformal blocks. We explicitly demonstrate the 6 trivalent dessins with 4 punctures on the sphere. We find that the parametrizations obtained from a dessin should be related by certain duality for gauge theories. Then we will discuss that some dessins could correspond to conformal blocks satisfying certain rules in different minimal models.
引用
收藏
页数:47
相关论文
共 50 条
  • [1] Dessins d’enfants, Seiberg-Witten curves and conformal blocks
    Jiakang Bao
    Omar Foda
    Yang-Hui He
    Edward Hirst
    James Read
    Yan Xiao
    Futoshi Yagi
    Journal of High Energy Physics, 2021
  • [2] Machine-learning dessins d'enfants: explorations via modular and Seiberg-Witten curves
    He, Yang-Hui
    Hirst, Edward
    Peterken, Toby
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (07)
  • [3] Ramification points of Seiberg-Witten curves
    Park, Chan Y.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (07):
  • [4] Seiberg-Witten curves and integrable systems
    Marshakov, A
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 69 - 91
  • [5] Seiberg-Witten equations and pseudoholomorphic curves
    Sergeev, Armen
    SYMMETRIES IN COMPLEX ANALYSIS, 2008, 468 : 191 - 223
  • [6] SEIBERG-WITTEN EQUATIONS AND PSEUDOHOLOMORPHIC CURVES
    Sergeev, Armen
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2006, 5 : 106 - 117
  • [7] Ramification points of Seiberg-Witten curves
    Chan Y. Park
    Journal of High Energy Physics, 2011
  • [8] Factorization of Seiberg-Witten curves with fundamental matter
    Janik, Romuald A.
    Obers, Niels A.
    Ronne, Peter B.
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (05):
  • [9] Deformed Seiberg-Witten curves for ADE quivers
    Francesco Fucito
    Jose F. Morales
    Daniel Ricci Pacifici
    Journal of High Energy Physics, 2013
  • [10] En Jacobi forms and Seiberg-Witten curves
    Sakai, Kazuhiro
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2019, 13 (01) : 53 - 80