In search of fundamental discreteness in (2+1)-dimensional quantum gravity

被引:2
|
作者
Budd, T. G. [1 ]
Loll, R. [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3508 TD Utrecht, Netherlands
关键词
MODULI SPACE; QUANTIZATION; POISSON; TIME;
D O I
10.1088/0264-9381/26/18/185011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Inspired by previouswork in (2 + 1)-dimensional quantum gravity, which found evidence for a discretization of time in the quantum theory, we reexamine the issue for the case of pure Lorentzian gravity with vanishing cosmological constant and spatially compact universes of genus g >= 2. Taking the Chern-Simons formulation with the Poincare gauge group as our starting point, we identify a set of length variables corresponding to space- and timelike distances along geodesics in three-dimensional Minkowski space. These are Dirac observables, that is, functions on the reduced phase space, whose quantization is essentially unique. For both space- and timelike distance operators, the spectrum is continuous and not bounded away from zero.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] POINT PARTICLES AS DEFECTS IN (2+1)-DIMENSIONAL QUANTUM-GRAVITY
    FUJIWARA, Y
    HIGUCHI, S
    HOSOYA, A
    MISHIMA, T
    SIINO, M
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (04) : 867 - 872
  • [22] QUANTUM TUNNELING OF FALSE VACUUM BUBBLES IN (2+1)-DIMENSIONAL GRAVITY
    MISHIMA, T
    SUZUKI, H
    YOSHINO, N
    [J]. PHYSICS LETTERS B, 1992, 287 (04) : 312 - 318
  • [23] Time-dependent quantum scattering in 2+1 dimensional gravity
    Alvarez, M
    deCarvalho, FM
    Griguolo, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (02) : 467 - 481
  • [24] TOPOLOGY CHANGE BY QUANTUM TUNNELING IN (2+1)-DIMENSIONAL EINSTEIN GRAVITY
    FUJIWARA, Y
    HIGUCHI, S
    HOSOYA, A
    MISHIMA, T
    SIINO, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (02): : 253 - 268
  • [25] HOMOTOPY-GROUPS AND 2+1 DIMENSIONAL QUANTUM-GRAVITY
    NELSON, JE
    REGGE, T
    [J]. NUCLEAR PHYSICS B, 1989, 328 (01) : 190 - 202
  • [26] QUANTUM EFFECTS NEAR A POINT MASS IN (2+1)-DIMENSIONAL GRAVITY
    SOURADEEP, T
    SAHNI, V
    [J]. PHYSICAL REVIEW D, 1992, 46 (04): : 1616 - 1633
  • [27] Invariants of 2+1 quantum gravity
    Regge, T
    [J]. QUANTUM GROUPS AND THEIR APPLICATIONS IN PHYSICS, 1996, 127 : 397 - 405
  • [28] QUANTUM ASPECTS OF 2+1 GRAVITY
    LOLL, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) : 6494 - 6509
  • [29] 2+1 QUANTUM-GRAVITY
    NELSON, JE
    REGGE, T
    [J]. PHYSICS LETTERS B, 1991, 272 (3-4) : 213 - 216
  • [30] CAUSALITY IN (2+1)-DIMENSIONAL GRAVITY
    THOOFT, G
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (05) : 1335 - 1348