In search of fundamental discreteness in (2+1)-dimensional quantum gravity

被引:2
|
作者
Budd, T. G. [1 ]
Loll, R. [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3508 TD Utrecht, Netherlands
关键词
MODULI SPACE; QUANTIZATION; POISSON; TIME;
D O I
10.1088/0264-9381/26/18/185011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Inspired by previouswork in (2 + 1)-dimensional quantum gravity, which found evidence for a discretization of time in the quantum theory, we reexamine the issue for the case of pure Lorentzian gravity with vanishing cosmological constant and spatially compact universes of genus g >= 2. Taking the Chern-Simons formulation with the Poincare gauge group as our starting point, we identify a set of length variables corresponding to space- and timelike distances along geodesics in three-dimensional Minkowski space. These are Dirac observables, that is, functions on the reduced phase space, whose quantization is essentially unique. For both space- and timelike distance operators, the spectrum is continuous and not bounded away from zero.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] LECTURES ON (2+1)-DIMENSIONAL GRAVITY
    CARLIP, S
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1995, 28 : S447 - S467
  • [32] A quantum Goldman bracket in (2+1) quantum gravity
    Nelson, J. E.
    Picken, R. F.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (30)
  • [33] QUANTUM BUBBLE DYNAMICS IN 2+1 DIMENSIONAL GRAVITY .1. GEOMETRODYNAMIC APPROACH
    ZAIDI, H
    GEGENBERG, J
    [J]. PHYSICS LETTERS B, 1994, 328 (1-2) : 22 - 27
  • [34] NONLOCAL REPRESENTATION OF (2+1)-DIMENSIONAL QUANTUM-GRAVITY WITH SPINOR FIELD
    KIM, CB
    YOSHIDA, K
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (11) : 2241 - 2260
  • [35] (2+1)-dimensional quantum gravity as the continuum limit of causal dynamical triangulations
    Benedetti, D.
    Loll, R.
    Zamponi, F.
    [J]. PHYSICAL REVIEW D, 2007, 76 (10):
  • [36] (2+1)-dimensional quantum gravity and the 3D-Ising model
    Martellini, M
    Rasetti, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (18-19): : 2217 - 2248
  • [37] ADM approach to 2+1 dimensional gravity
    Menotti, P
    Seminara, D
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 88 : 132 - 141
  • [38] A formal analysis of (2+1)-dimensional gravity
    Engineer, S
    Srinivasan, K
    Padmanabhan, T
    [J]. ASTROPHYSICAL JOURNAL, 1999, 512 (01): : 1 - 8
  • [39] Hamiltonian structure of 2+1 dimensional gravity
    Menotti, P
    [J]. RECENT DEVELOPMENTS IN GENERAL RELATIVITY, GENOA 2000, 2002, : 165 - 177
  • [40] COMPARATIVE QUANTIZATIONS OF (2+1)-DIMENSIONAL GRAVITY
    CARLIP, S
    NELSON, JE
    [J]. PHYSICAL REVIEW D, 1995, 51 (10) : 5643 - 5653