QUANTUM ASPECTS OF 2+1 GRAVITY

被引:8
|
作者
LOLL, R
机构
[1] Sezione INFN di Firenze, I-50125 Firenze
关键词
D O I
10.1063/1.531253
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review and systematize several recent attempts to canonically quantize general relativity in 2+1 dimensions, defined on space-times R X Sigma(g), where Sigma(g) is a compact Riemann surface of genus g. The emphasis is on quantizations of the classical connection formulation, which use Wilson loops as their basic observables, but results from the ADM formulation are also summarized. We evaluate the progress and discuss the possible quantum (in)equivalence of the various approaches. (C) 1995 American Institute of Physics.
引用
收藏
页码:6494 / 6509
页数:16
相关论文
共 50 条
  • [1] Invariants of 2+1 quantum gravity
    Regge, T
    QUANTUM GROUPS AND THEIR APPLICATIONS IN PHYSICS, 1996, 127 : 397 - 405
  • [2] 2+1 QUANTUM-GRAVITY
    NELSON, JE
    REGGE, T
    PHYSICS LETTERS B, 1991, 272 (3-4) : 213 - 216
  • [3] A quantum Goldman bracket in (2+1) quantum gravity
    Nelson, J. E.
    Picken, R. F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (30)
  • [4] 2+1 DIMENSIONAL QUANTUM-GRAVITY
    NELSON, JE
    REGGE, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (11-12): : 2091 - 2096
  • [5] Quantum holonomies in (2+1)-dimensional gravity
    Nelson, JE
    Picken, RF
    PHYSICS LETTERS B, 2000, 471 (04) : 367 - 372
  • [6] 2+1 QUANTUM-GRAVITY FOR HIGH GENUS
    NELSON, JE
    REGGE, T
    CLASSICAL AND QUANTUM GRAVITY, 1992, 9 : 187 - 196
  • [7] Quantum collapse of dust shells in 2+1 gravity
    Ortiz, L.
    Ryan, M. P., Jr.
    GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (08) : 1087 - 1107
  • [8] Large diffeomorphisms in 2+1 quantum gravity on the torus
    Peldan, P
    PHYSICAL REVIEW D, 1996, 53 (06) : 3147 - 3155
  • [9] Classical and quantum solutions of 2+1 dimensional gravity
    Kenmoku, M
    Matsuyama, T
    Sato, R
    Uchida, S
    FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 161 - 167
  • [10] Spacetime singularities in (2+1)-dimensional quantum gravity
    Minassian, E
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (23) : 5877 - 5900