Numerical simulation for the three-dimension fractional sub-diffusion equation

被引:31
|
作者
Chen, J. [1 ]
Liu, F. [2 ]
Liu, Q. [3 ]
Chen, X. [1 ]
Anh, V. [2 ]
Turner, I. [2 ]
Burrage, K. [2 ,4 ,5 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361005, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[4] Univ Oxford, COMLAB, Oxford OX1 3QD, England
[5] Univ Oxford, OCISB, Oxford OX1 3QD, England
基金
中国国家自然科学基金;
关键词
Three-dimensional fractional sub-diffusion equation; Fractional alternating direction implicit scheme; Stability; Convergence; DIFFERENCE APPROXIMATION; SCHEME; SPACE;
D O I
10.1016/j.apm.2014.03.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fractional sub-diffusion equations have been widely used to model sub-diffusive systems. Most algorithms are designed for one-dimensional problems due to the memory effect in fractional derivative. In this paper, the numerical simulation of the 3D fractional sub-diffusion equation with a time fractional derivative of order alpha (0 < alpha < 1) is considered. A fractional alternating direction implicit scheme (FADIS) is proposed. We prove that FADIS is uniquely solvable, unconditionally stable and convergent in H-1 norm by the energy method. A numerical example is given to demonstrate the efficiency of FADIS. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:3695 / 3705
页数:11
相关论文
共 50 条
  • [41] Numerical treatment of non-linear fourth-order distributed fractional sub-diffusion equation with time-delay
    Nandal, Sarita
    Pandey, Dwijendra Narain
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83
  • [42] Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
    Chen, Chang-Ming
    Liu, Fawang
    Turner, Ian
    Anh, Vo
    [J]. NUMERICAL ALGORITHMS, 2010, 54 (01) : 1 - 21
  • [43] Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation
    Umair Ali
    Farah Aini Abdullah
    Syed Tauseef Mohyud-Din
    [J]. Advances in Difference Equations, 2017
  • [44] Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
    Chang-Ming Chen
    Fawang Liu
    Ian Turner
    Vo Anh
    [J]. Numerical Algorithms, 2010, 54 : 1 - 21
  • [45] Numerical simulation on three-dimension supersonic jet of missile vertical launching system
    School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
    不详
    [J]. Hangkong Dongli Xuebao, 2007, 10 (1765-1770): : 1765 - 1770
  • [46] An alternating segment Crank–Nicolson parallel difference scheme for the time fractional sub-diffusion equation
    Lifei Wu
    Xiaozhong Yang
    Yanhua Cao
    [J]. Advances in Difference Equations, 2018
  • [47] An Extended Cubic B-spline Collocation Scheme for Time Fractional Sub-diffusion Equation
    Akram, Tayyaba
    Abbas, Muhammad
    Ismail, Ahmad Izani
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [48] The Monte Carlo Markov chain method for solving the modified anomalous fractional sub-diffusion equation
    Yan, Zhi-Zhong
    Zheng, Cheng-Feng
    Zhang, Chuanzeng
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 477 - 490
  • [49] Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation
    Ali, Umair
    Sohail, Muhammad
    Usman, Muhammad
    Abdullah, Farah Aini
    Khan, Ilyas
    Nisar, Kottakkaran Sooppy
    [J]. SYMMETRY-BASEL, 2020, 12 (05):
  • [50] A reliable implicit difference scheme for treatments of fourth-order fractional sub-diffusion equation
    Sayevand, K.
    Arjang, F.
    [J]. SCIENTIA IRANICA, 2017, 24 (03) : 1100 - 1107