Numerical simulation for the three-dimension fractional sub-diffusion equation

被引:31
|
作者
Chen, J. [1 ]
Liu, F. [2 ]
Liu, Q. [3 ]
Chen, X. [1 ]
Anh, V. [2 ]
Turner, I. [2 ]
Burrage, K. [2 ,4 ,5 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361005, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[4] Univ Oxford, COMLAB, Oxford OX1 3QD, England
[5] Univ Oxford, OCISB, Oxford OX1 3QD, England
基金
中国国家自然科学基金;
关键词
Three-dimensional fractional sub-diffusion equation; Fractional alternating direction implicit scheme; Stability; Convergence; DIFFERENCE APPROXIMATION; SCHEME; SPACE;
D O I
10.1016/j.apm.2014.03.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fractional sub-diffusion equations have been widely used to model sub-diffusive systems. Most algorithms are designed for one-dimensional problems due to the memory effect in fractional derivative. In this paper, the numerical simulation of the 3D fractional sub-diffusion equation with a time fractional derivative of order alpha (0 < alpha < 1) is considered. A fractional alternating direction implicit scheme (FADIS) is proposed. We prove that FADIS is uniquely solvable, unconditionally stable and convergent in H-1 norm by the energy method. A numerical example is given to demonstrate the efficiency of FADIS. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:3695 / 3705
页数:11
相关论文
共 50 条
  • [21] A Singular Tempered Sub-Diffusion Fractional Equation with Changing-Sign Perturbation
    Zhang, Xinguang
    Chen, Jingsong
    Li, Lishuang
    Wu, Yonghong
    [J]. AXIOMS, 2024, 13 (04)
  • [22] Numerical solution of non-linear fourth order fractional sub-diffusion wave equation with time delay
    Nandal, Sarita
    Pandey, Dwijendra Narain
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
  • [23] An exponential B-spline collocation method for the fractional sub-diffusion equation
    Zhu, Xiaogang
    Nie, Yufeng
    Yuan, Zhanbin
    Wang, Jungang
    Yang, Zongze
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [24] Waveform relaxation for fractional sub-diffusion equations
    Jun Liu
    Yao-Lin Jiang
    Xiao-Long Wang
    Yan Wang
    [J]. Numerical Algorithms, 2021, 87 : 1445 - 1478
  • [25] Nonpolynomial Numerical Scheme for Fourth-Order Fractional Sub-diffusion Equations
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [26] Waveform relaxation for fractional sub-diffusion equations
    Liu, Jun
    Jiang, Yao-Lin
    Wang, Xiao-Long
    Wang, Yan
    [J]. NUMERICAL ALGORITHMS, 2021, 87 (04) : 1445 - 1478
  • [27] Effective numerical treatment of sub-diffusion equation with non-smooth solution
    Yang, Zongze
    Wang, Jungang
    Li, Yan
    Nie, Yufeng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1394 - 1407
  • [28] Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation
    Yang, Xuehua
    Zhang, Haixiang
    Xu, Da
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 256 : 824 - 837
  • [29] Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation
    Zhang, Ya-nan
    Sun, Zhi-zhong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (24) : 8713 - 8728
  • [30] A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation
    Cui-cui Ji
    Zhi-zhong Sun
    [J]. Journal of Scientific Computing, 2015, 64 : 959 - 985