Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation

被引:0
|
作者
Umair Ali
Farah Aini Abdullah
Syed Tauseef Mohyud-Din
机构
[1] Universiti Sains Malaysia,School of Mathematical Sciences
[2] HITEC University,Department of Mathematics
关键词
modified anomalous fractional sub-diffusion equation; modified implicit difference method; stability; convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we solve two-dimensional modified anomalous fractional sub-diffusion equation using modified implicit finite difference approximation. The stability and convergence of the proposed scheme are analyzed by the Fourier series method. We show that the scheme is unconditionally stable and the approximate solution converges to the exact solution. A numerical example is given to show the application and feasibility of the proposed scheme.
引用
收藏
相关论文
共 50 条
  • [1] Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation
    Ali, Umair
    Abdullah, Farah Aini
    Mohyud-Din, Syed Tauseef
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation
    Wang, Zhibo
    Vong, Seakweng
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 277 : 1 - 15
  • [3] A New Implicit Numerical Scheme for Fractional Sub-diffusion Equation
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. 2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [4] A reliable implicit difference scheme for treatments of fourth-order fractional sub-diffusion equation
    Sayevand, K.
    Arjang, F.
    [J]. SCIENTIA IRANICA, 2017, 24 (03) : 1100 - 1107
  • [5] A high-order difference scheme for the fractional sub-diffusion equation
    Hao, Zhao-peng
    Lin, Guang
    Sun, Zhi-zhong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (02) : 405 - 426
  • [6] The Monte Carlo Markov chain method for solving the modified anomalous fractional sub-diffusion equation
    Yan, Zhi-Zhong
    Zheng, Cheng-Feng
    Zhang, Chuanzeng
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 477 - 490
  • [7] Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Mohebbi, Akbar
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (5-6) : 3635 - 3654
  • [8] A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term
    Mohebbi, Akbar
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 240 : 36 - 48
  • [9] Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation
    Ali, Umair
    Sohail, Muhammad
    Usman, Muhammad
    Abdullah, Farah Aini
    Khan, Ilyas
    Nisar, Kottakkaran Sooppy
    [J]. SYMMETRY-BASEL, 2020, 12 (05):
  • [10] ANALYSIS AND IMPLEMENTATION OF NUMERICAL SCHEME FOR THE VARIABLE-ORDER FRACTIONAL MODIFIED SUB-DIFFUSION EQUATION
    Ali, Umair
    Naeem, Muhammad
    Abdullah, Farah Aini
    Wang, Miao-kun
    Salama, Fouad Mohammad
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)