Integrated Clustering and Anomaly Detection (INCAD) for Streaming Data

被引:1
|
作者
Guggilam, Sreelekha [1 ]
Zaidi, Syed Mohammed Arshad [2 ]
Chandola, Varun [1 ,2 ]
Patra, Abani K. [1 ]
机构
[1] Univ Buffalo State Univ New York, Computat Data Sci & Engn, Buffalo, NY 14260 USA
[2] Univ Buffalo State Univ New York, Comp Sci & Engn, Buffalo, NY 14260 USA
来源
基金
美国国家科学基金会;
关键词
Anomaly detection; Bayesian non-parametric models; Extreme value theory; Clustering based anomaly detection;
D O I
10.1007/978-3-030-22747-0_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Most current clustering based anomaly detection methods use scoring schema and thresholds to classify anomalies. These methods are often tailored to target specific data sets with "known" number of clusters. The paper provides a streaming clustering and anomaly detection algorithm that does not require strict arbitrary thresholds on the anomaly scores or knowledge of the number of clusters while performing probabilistic anomaly detection and clustering simultaneously. This ensures that the cluster formation is not impacted by the presence of anomalous data, thereby leading to more reliable definition of "normal vs abnormal" behavior. The motivations behind developing the INCAD model [17] and the path that leads to the streaming model are discussed.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 50 条
  • [41] Anomaly detection of diabetes data based on hierarchical clustering and CNN
    Fang, Jinhai
    Xie, Zuoling
    Cheng, Haitao
    Fan, Bin
    Xu, He
    Li, Peng
    [J]. 8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 71 - 78
  • [42] Data Stream Clustering for Online Anomaly Detection in Cloud Applications
    Sauvanaud, Carla
    Silvestre, Guthemberg
    Kaaniche, Mohamed
    Kanoun, Karama
    [J]. 2015 ELEVENTH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC), 2015, : 120 - 131
  • [43] Unsupervised clustering in streaming data
    Tasoulis, Dimitris K.
    Adams, Niall M.
    Hand, David J.
    [J]. ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 638 - +
  • [44] PROBABILISTIC REASONING FOR STREAMING ANOMALY DETECTION
    Carter, Kevin M.
    Streilein, William W.
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 377 - 380
  • [45] SAND: Streaming Subsequence Anomaly Detection
    Boniol, Paul
    Paparrizos, John
    Palpanas, Themis
    Franklin, Michael J.
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (10): : 1717 - 1729
  • [46] Anomaly Detection over Streaming Data: Indy500 Case Study
    Widanage, Chathura
    Li, Jiayu
    Tyagi, Sahil
    Teja, Ravi
    Peng, Bo
    Kamburugamuve, Supun
    Koskey, Jon
    Baum, Dan
    Smith, Dayle M.
    Qiu, Judy
    [J]. 2019 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (IEEE CLOUD 2019), 2019, : 9 - 16
  • [47] Anomaly detection in streaming data with gaussian process based stochastic differential equations
    Glyn-Davies, Alex
    Girolami, Mark
    [J]. PATTERN RECOGNITION LETTERS, 2022, 153 : 254 - 260
  • [48] Real-time anomaly detection using parallelized intrusion detection architecture for streaming data
    Chellammal, P.
    Malarchelvi, Sheba Kezia P. D.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (04):
  • [50] Clustering ellipses for anomaly detection
    Moshtaghi, Masud
    Havens, Timothy C.
    Bezdek, James C.
    Park, Laurence
    Leckie, Christopher
    Rajasegarar, Sutharshan
    Keller, James M.
    Palaniswami, Marimuthu
    [J]. PATTERN RECOGNITION, 2011, 44 (01) : 55 - 69