PROBABILISTIC REASONING FOR STREAMING ANOMALY DETECTION

被引:0
|
作者
Carter, Kevin M. [1 ]
Streilein, William W. [1 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
关键词
Anomaly detection; predictive models; time series analysis; statistical learning; information security; CHART;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In many applications it is necessary to determine whether an observation from an incoming high-volume data stream matches expectations or is anomalous. A common method for performing this task is to use an Exponentially Weighted Moving Average (EWMA), which smooths out the minor variations of the data stream. While EWMA is efficient at processing high-rate streams, it can be very volatile to abrupt transient changes in the data, losing utility for appropriately detecting anomalies. In this paper we present a probabilistic approach to EWMA which dynamically adapts the weighting based on the observation probability. This results in robustness to data anomalies yet quick adaptability to distributional data shifts.
引用
收藏
页码:377 / 380
页数:4
相关论文
共 50 条
  • [1] SAND: Streaming Subsequence Anomaly Detection
    Boniol, Paul
    Paparrizos, John
    Palpanas, Themis
    Franklin, Michael J.
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (10): : 1717 - 1729
  • [2] Anomaly pattern detection for streaming data
    Kim, Taegong
    Park, Cheong Hee
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 149
  • [3] Autonomous anomaly detection for streaming data
    Basheer, Muhammad Yunus Iqbal
    Ali, Azliza Mohd
    Hamid, Nurzeatul Hamimah Abdul
    Ariffin, Muhammad Azizi Mohd
    Osman, Rozianawaty
    Nordin, Sharifalillah
    Gu, Xiaowei
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [4] Evidential Reasoning for Video Anomaly Detection
    Sun, Che
    Jia, Yunde
    Wu, Yuwei
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2106 - 2114
  • [5] Weakly Supervised Anomaly Detection for Streaming Data
    Zhang, Wei
    Challis, Chris
    [J]. 23RD IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2021), 2021, : 31 - 34
  • [6] UNSUPERVISED STREAMING ANOMALY DETECTION FOR INSTRUMENTED INFRASTRUCTURE
    Hoeltgebaum, Henrique
    Adams, Niall
    Lau, F. Din-Houn
    [J]. ANNALS OF APPLIED STATISTICS, 2021, 15 (03): : 1101 - 1125
  • [7] Evolving anomaly detection for network streaming data
    Wang Xiaolan
    Ahmed, Md Manjur
    Husen, Mohd Nizam
    Qian, Zhao
    Belhaouari, Samir Brahim
    [J]. INFORMATION SCIENCES, 2022, 608 : 757 - 777
  • [8] Anomaly Detection in Streaming Nonstationary Temporal Data
    Talagala, Priyanga Dilini
    Hyndman, Rob J.
    Smith-Miles, Kate
    Kandanaarachchi, Sevvandi
    Munoz, Mario A.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (01) : 13 - 27
  • [9] Online Influence Forest for Streaming Anomaly Detection
    Martins, Ines
    Resende, Joao S.
    Gama, Joao
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XXI, IDA 2023, 2023, 13876 : 274 - 286
  • [10] SNDProb: A Probabilistic Approach for Streaming Novelty Detection
    Carreno, Ander
    Inza, Inaki
    Lozano, Jose A.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6335 - 6348