Integrated Clustering and Anomaly Detection (INCAD) for Streaming Data

被引:2
|
作者
Guggilam, Sreelekha [1 ]
Zaidi, Syed Mohammed Arshad [2 ]
Chandola, Varun [1 ,2 ]
Patra, Abani K. [1 ]
机构
[1] Univ Buffalo State Univ New York, Computat Data Sci & Engn, Buffalo, NY 14260 USA
[2] Univ Buffalo State Univ New York, Comp Sci & Engn, Buffalo, NY 14260 USA
来源
基金
美国国家科学基金会;
关键词
Anomaly detection; Bayesian non-parametric models; Extreme value theory; Clustering based anomaly detection;
D O I
10.1007/978-3-030-22747-0_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Most current clustering based anomaly detection methods use scoring schema and thresholds to classify anomalies. These methods are often tailored to target specific data sets with "known" number of clusters. The paper provides a streaming clustering and anomaly detection algorithm that does not require strict arbitrary thresholds on the anomaly scores or knowledge of the number of clusters while performing probabilistic anomaly detection and clustering simultaneously. This ensures that the cluster formation is not impacted by the presence of anomalous data, thereby leading to more reliable definition of "normal vs abnormal" behavior. The motivations behind developing the INCAD model [17] and the path that leads to the streaming model are discussed.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 50 条
  • [31] An Efficient Anomaly Detection Approach Using Cube Sampling with Streaming Data
    Jain, Seemandhar
    Jain, Prarthi
    Srivastava, Abhishek
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 498 - 505
  • [32] Real-time Bayesian anomaly detection in streaming environmental data
    Hill, David J.
    Minsker, Barbara S.
    Amir, Eyal
    WATER RESOURCES RESEARCH, 2009, 45
  • [33] ADVERSARIAL ANOMALY DETECTION FOR MARKED SPATIO-TEMPORAL STREAMING DATA
    Zhu, Shixiang
    Yuchi, Henry Shaowu
    Xie, Yao
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8921 - 8925
  • [34] A Streaming Data Anomaly Detection Analytic Engine for Mobile Network Management
    Wang, MingXue
    Handurukande, Sidath
    2016 INT IEEE CONFERENCES ON UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS (UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016, : 722 - 729
  • [35] Hardware Architecture Proposal for TEDA Algorithm to Data Streaming Anomaly Detection
    Da Silva, Lucileide M. D.
    Coutinho, Maria G. F.
    Santos, Carlos E. B., Jr.
    Santos, Mailson R.
    Ruiz, M. Dolores
    Guedes, Luiz Affonso
    Fernandes, Marcelo A. C.
    IEEE ACCESS, 2021, 9 : 103141 - 103152
  • [36] Performance Analysis of Hybrid RR Algorithm for Anomaly Detection in Streaming Data
    Amudha L.
    PushpaLakshmi R.
    Computer Systems Science and Engineering, 2023, 45 (03): : 2299 - 2312
  • [37] Real-time Anomaly Detection and Classification in Streaming PMU Data
    Hannon, Christopher
    Deka, Deepjyoti
    Jin, Dong
    Vuffray, Marc
    Lokhov, Andrey Y.
    2021 IEEE MADRID POWERTECH, 2021,
  • [38] Continual AE-WGAN for Unsupervised Anomaly Detection in Streaming Data
    Seghair, Tarek
    Besbes, Olfa
    Abdellatif, Takoua
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, ACIIDS 2024, 2024, 14795 : 3 - 14
  • [39] Data-Driven Anomaly Detection Approach for Time-Series Streaming Data
    Zhang, Minghu
    Guo, Jianwen
    Li, Xin
    Jin, Rui
    SENSORS, 2020, 20 (19) : 1 - 17
  • [40] Anomaly detection in streaming environmental sensor data: A data-driven modeling approach
    Hill, David J.
    Minsker, Barbara S.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (09) : 1014 - 1022