Contributions to Modified Spherical Harmonics in Four Dimensions

被引:3
|
作者
Leutwiler, Heinz [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Spherical harmonics; Generalized axially symmetric potentials; Modified spherical harmonics; 30G35; 33A45;
D O I
10.1007/s11785-020-01026-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modification of the classical theory of spherical harmonics in four dimensions is presented. The space R4={(x,y,t,s)} is replaced by the upper half space R+4</mml:msubsup>=<mml:mfenced close="}" open="{">(x,y,t,s),s>0</mml:mfenced>, and the unit sphere S in R4 by the unit half sphere S+=<mml:mfenced close="}" open="{">(x,y,t,s):x2+y2+t2+s2=1,s>0</mml:mfenced>. Instead of the Laplace equation Delta h=0 we shall consider the Weinstein equation s Delta u+k<mml:mfrac>partial derivative u partial derivative s</mml:mfrac>=0, for k is an element of N. The Euclidean scalar product for functions on S will be replaced by a non-Euclidean one for functions on <mml:msub>S+. It will be shown that in this modified setting all major results from the theory of spherical harmonics stay valid. In addition we shall deduct-with respect to this non-Euclidean scalar product-an orthonormal system of homogeneous polynomials, which satisfies the above Weinstein equation.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Computing and Updating Hypervolume Contributions in Up to Four Dimensions
    Guerreiro, Andreia P.
    Fonseca, Carlos M.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (03) : 449 - 463
  • [22] Spherical Harmonics
    Atkinson, Kendall
    Han, Weimin
    [J]. SPHERICAL HARMONICS AND APPROXIMATIONS ON THE UNIT SPHERE: AN INTRODUCTION, 2012, 2044 : 11 - 86
  • [23] ON THE RELATION BETWEEN SPHERICAL HARMONICS AND SIMPLIFIED SPHERICAL HARMONICS METHODS
    Coppa, G. G. M.
    Giusti, V.
    Montagnini, B.
    Ravetto, P.
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2010, 39 (2-4): : 164 - 191
  • [24] Spherical cap harmonics revisited and their relationship to ordinary spherical harmonics
    De Santis, A
    Torta, JM
    Lowes, FJ
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH PART A-SOLID EARTH AND GEODESY, 1999, 24 (11-12): : 935 - 941
  • [25] Application of the modified spherical harmonics method to some problems in biomedical optics
    Xu, Heping
    Patterson, Michael S.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (12): : N247 - N251
  • [26] Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions
    Berti, E
    Cardoso, V
    Casals, M
    [J]. PHYSICAL REVIEW D, 2006, 73 (02):
  • [27] On a spherical code in the space of spherical harmonics
    A. V. Bondarenko
    [J]. Ukrainian Mathematical Journal, 2010, 62 : 993 - 996
  • [28] ON A SPHERICAL CODE IN THE SPACE OF SPHERICAL HARMONICS
    Bondarenko, A. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (06) : 993 - 996
  • [29] Fractal Spherical Harmonics
    Navascues, M. A.
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS, 2013,
  • [30] ON THE SYMMETRIES OF SPHERICAL HARMONICS
    MEYER, B
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (01): : 135 - 157