Fractal Spherical Harmonics

被引:2
|
作者
Navascues, M. A. [1 ]
机构
[1] Univ Zaragoza, Escuela Ingn & Arquitectura, Dept Matemat, Zaragoza 50018, Spain
关键词
D O I
10.1155/2013/927368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper tackles the construction of fractal maps on the unit sphere. The functions defined are a generalization of the classical spherical harmonics. The methodology used involves an iterated function system and a linear and bounded operator of functions on the sphere. For a suitable choice of the coefficients of the system, one obtains classical maps on the sphere. The different values of the system parameters provide Bessel sequences, frames, and Riesz fractal bases for the Lebesgue space of the square integrable functions on the sphere. The Laplace series expansion is generalized to a sum in terms of the new fractal mappings.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Spherical harmonics and monopole harmonics
    Fung, MK
    [J]. CHINESE JOURNAL OF PHYSICS, 2000, 38 (04) : 773 - 782
  • [2] SPHERICAL HARMONICS
    SEELEY, RT
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2): : 115 - &
  • [3] Spherical Harmonics
    Atkinson, Kendall
    Han, Weimin
    [J]. SPHERICAL HARMONICS AND APPROXIMATIONS ON THE UNIT SPHERE: AN INTRODUCTION, 2012, 2044 : 11 - 86
  • [4] ON THE RELATION BETWEEN SPHERICAL HARMONICS AND SIMPLIFIED SPHERICAL HARMONICS METHODS
    Coppa, G. G. M.
    Giusti, V.
    Montagnini, B.
    Ravetto, P.
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2010, 39 (2-4): : 164 - 191
  • [5] Spherical cap harmonics revisited and their relationship to ordinary spherical harmonics
    De Santis, A
    Torta, JM
    Lowes, FJ
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH PART A-SOLID EARTH AND GEODESY, 1999, 24 (11-12): : 935 - 941
  • [6] ON A SPHERICAL CODE IN THE SPACE OF SPHERICAL HARMONICS
    Bondarenko, A. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (06) : 993 - 996
  • [7] On a spherical code in the space of spherical harmonics
    A. V. Bondarenko
    [J]. Ukrainian Mathematical Journal, 2010, 62 : 993 - 996
  • [8] ON THE SYMMETRIES OF SPHERICAL HARMONICS
    MEYER, B
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (01): : 135 - 157
  • [9] The addition theorem for spherical harmonics and monopole harmonics
    Fung, MK
    [J]. CHINESE JOURNAL OF PHYSICS, 2002, 40 (05) : 490 - 495
  • [10] GENERALIZED SPHERICAL HARMONICS
    PROTTER, MH
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (MAR) : 314 - 341