Contributions to Modified Spherical Harmonics in Four Dimensions

被引:3
|
作者
Leutwiler, Heinz [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Spherical harmonics; Generalized axially symmetric potentials; Modified spherical harmonics; 30G35; 33A45;
D O I
10.1007/s11785-020-01026-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modification of the classical theory of spherical harmonics in four dimensions is presented. The space R4={(x,y,t,s)} is replaced by the upper half space R+4</mml:msubsup>=<mml:mfenced close="}" open="{">(x,y,t,s),s>0</mml:mfenced>, and the unit sphere S in R4 by the unit half sphere S+=<mml:mfenced close="}" open="{">(x,y,t,s):x2+y2+t2+s2=1,s>0</mml:mfenced>. Instead of the Laplace equation Delta h=0 we shall consider the Weinstein equation s Delta u+k<mml:mfrac>partial derivative u partial derivative s</mml:mfrac>=0, for k is an element of N. The Euclidean scalar product for functions on S will be replaced by a non-Euclidean one for functions on <mml:msub>S+. It will be shown that in this modified setting all major results from the theory of spherical harmonics stay valid. In addition we shall deduct-with respect to this non-Euclidean scalar product-an orthonormal system of homogeneous polynomials, which satisfies the above Weinstein equation.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] SPHERICAL HARMONICS SUPERSEDED
    不详
    [J]. NATURE, 1970, 225 (5232) : 501 - &
  • [42] Spherical harmonics scaling
    Jiaping Wang
    Kun Xu
    Kun Zhou
    Stephen Lin
    Shimin Hu
    Baining Guo
    [J]. The Visual Computer, 2006, 22 : 713 - 720
  • [43] SPHERICAL HARMONICS ON GRASSMANNIANS
    Howe, Roger
    Lee, Soo Teck
    [J]. COLLOQUIUM MATHEMATICUM, 2010, 118 (01) : 349 - 364
  • [44] GENERALIZATION OF SPHERICAL HARMONICS
    SHAFER, RE
    [J]. SIAM REVIEW, 1973, 15 (03) : 658 - 663
  • [45] Spherical Harmonics and the Icosahedron
    Hitchin, Nigel
    [J]. GROUPS AND SYMMETRIES: FROM NEOLITHIC SCOTS TO JOHN MCKAY, 2009, 47 : 215 - 231
  • [46] CUBIC HARMONICS AS LINEAR COMBINATIONS OF SPHERICAL HARMONICS
    MUGGLI, J
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1972, 23 (02): : 311 - &
  • [47] ON THE SPACE OF HOMOGENEOUS MODIFIED HARMONIC POLYNOMIALS IN FOUR DIMENSIONS
    Symeonidis, Eleutherius
    [J]. MATHEMATICAL REPORTS, 2021, 23 (1-2): : 227 - 232
  • [48] Generating Functions for Spherical Harmonics and Spherical Monogenics
    P. Cerejeiras
    U. Kähler
    R. Lávička
    [J]. Advances in Applied Clifford Algebras, 2014, 24 : 995 - 1004
  • [49] Generating Functions for Spherical Harmonics and Spherical Monogenics
    Cerejeiras, P.
    Kaehler, U.
    Lavicka, R.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (04) : 995 - 1004