Cycle-Complete Ramsey Numbers

被引:9
|
作者
Keevash, Peter [1 ]
Long, Eoin [1 ]
Skokan, Jozef [2 ,3 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] London Sch Econ, Dept Math, Houghton St, London WC2A 2AE, England
[3] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
D O I
10.1093/imrn/rnz119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Ramsey number r(C-l, K-n) is the smallest natural number N such that every red/blue edge colouring of a clique of order N contains a red cycle of length l or a blue clique of order n. In 1978, Erdos, Faudree, Rousseau, and Schelp conjectured that r(C-l, K-n) = (l - 1)(n - 1) + 1 for l >= n >= 3 provided (l, n) not equal (3, 3). We prove that, for some absolute constant C >= 1, we have r(C-l, K-n) = (l - 1)(n - 1) + 1 provided l >= Clog n/log log n. Up to the value of C this is tight since we also show that, for any epsilon > 0 and n > n(0)(epsilon), we have r(C-l, K-n) >> (l - 1)(n - 1) + 1 for all 3 <= l <= (1 - epsilon) log n/log log n. This proves the conjecture of Erdos, Faudree, Rousseau, and Schelp for large l, a stronger form of the conjecture due to Nikiforov, and answers (up to multiplicative constants) two further questions of Erdos, Faudree, Rousseau, and Schelp.
引用
收藏
页码:277 / 302
页数:26
相关论文
共 50 条
  • [1] The cycle-complete graph Ramsey numbers
    Nikiforov, V
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 349 - 370
  • [2] A note on odd cycle-complete graph Ramsey numbers
    Sudakov, Benny
    ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [3] Linear Turan Numbers of Linear Cycles and Cycle-Complete Ramsey Numbers
    Collier-Cartaino, Clayton
    Graber, Nathan
    Jiang, Tao
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (03): : 358 - 386
  • [4] All cycle-complete graph Ramsey numbers r(Cm, K6)
    Schiermeyer, I
    JOURNAL OF GRAPH THEORY, 2003, 44 (04) : 251 - 260
  • [5] THE CYCLE-COMPLETE GRAPH RAMSEY NUMBERS R(Cn, K8), FOR 10 ≤ n ≤ 15
    Baniabedalruhman, A.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (04): : 703 - 718
  • [6] Efficient algorithms for subdominant cycle-complete cost functions and cycle-complete solutions
    Ando, Kazutoshi
    Inagaki, Ryosuke
    Shoji, Kazuya
    DISCRETE APPLIED MATHEMATICS, 2017, 225 : 1 - 10
  • [7] Complete Critical Ramsey Numbers of Cycle and K4 Numbers
    Li Y.
    Li Y.
    Wang Y.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (09): : 1355 - 1358
  • [8] The cycle-complete graph Ramsey numbers R(C7, K9) and R(C8, K9)
    Baniabedalruhman, A.
    Alrifai, Ahmad
    Al-Rhayyel, Ahmad A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 325 - 335
  • [9] The cycle-complete graph Ramsey numbers R(C7, K9) and R(C8, K9)
    Baniabedalruhman, A.
    Alrifai, Ahmad
    Al-Rhayyel, Ahmad A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 325 - 335
  • [10] Ramsey numbers of a cycle
    Li, Yusheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (04): : 1007 - 1013