THE CYCLE-COMPLETE GRAPH RAMSEY NUMBERS R(Cn, K8), FOR 10 ≤ n ≤ 15

被引:1
|
作者
Baniabedalruhman, A. [1 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
来源
关键词
Ramsey number; cycle graph; complete graph;
D O I
10.47013/16.4.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two graphs H-1 and H-2, the Ramsey number R(H-1, H-2) is the smallest natural number n such that each graph of order n contains a copy of H-1 or its complement contains a copy of H-2. In this paper, we find the exact Ramsey number R(C-n, K-8) for 10 <= n <= 15, where C-n is the cycle on n vertices and K8 is the complete graph of order 8.
引用
收藏
页码:703 / 718
页数:16
相关论文
共 32 条
  • [1] The cycle-complete graph Ramsey numbers
    Nikiforov, V
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 349 - 370
  • [2] All cycle-complete graph Ramsey numbers r(Cm, K6)
    Schiermeyer, I
    JOURNAL OF GRAPH THEORY, 2003, 44 (04) : 251 - 260
  • [3] Cycle-Complete Ramsey Numbers
    Keevash, Peter
    Long, Eoin
    Skokan, Jozef
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (01) : 277 - 302
  • [4] A note on odd cycle-complete graph Ramsey numbers
    Sudakov, Benny
    ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [5] The cycle-complete graph Ramsey numbers R(C7, K9) and R(C8, K9)
    Baniabedalruhman, A.
    Alrifai, Ahmad
    Al-Rhayyel, Ahmad A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 325 - 335
  • [6] The cycle-complete graph Ramsey numbers R(C7, K9) and R(C8, K9)
    Baniabedalruhman, A.
    Alrifai, Ahmad
    Al-Rhayyel, Ahmad A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 325 - 335
  • [7] The cycle-complete graph Ramsey numbers R(C7, K9) and R(C8, K9)
    Baniabedalruhman, A.
    Alrifai, Ahmad
    Al-Rhayyel, Ahmad A.
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 325 - 335
  • [8] Linear Turan Numbers of Linear Cycles and Cycle-Complete Ramsey Numbers
    Collier-Cartaino, Clayton
    Graber, Nathan
    Jiang, Tao
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (03): : 358 - 386
  • [9] The Ramsey numbers R(Cm, K7) and R(C7, K8)
    Chen, Yaojun
    Cheng, T. C. Edwin
    Zhang, Yunqing
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1337 - 1352
  • [10] The Ramsey number R(C8, K8)
    Zhang, Yunqing
    Zhang, Ke Min
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1084 - 1090