The Ramsey numbers R(Cm, K7) and R(C7, K8)

被引:15
|
作者
Chen, Yaojun [1 ]
Cheng, T. C. Edwin [2 ]
Zhang, Yunqing [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Hong Kong Polytech Univ, Dept Logist, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.ejc.2007.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two given graphs G(1) and G(2), the Ramsey number R(G(1), G(2)) is the smallest integer it such that for any graph G of order n, either G contains G(1) or the complement of G contains G(2). Let C-m denote a cycle of length in and K-n a complete graph of order n. In this paper we show that R(C-m, K-7) = 6m - 5 for m >= 7 and R(C-7, K-8) = 43, with the former result confirming a conjecture due to Erdos, Faudree, Rousseau and Schelp, that R(C,,,, Kn) = (m - 1)(n - 1) + 1 for m >= n >= 3 and (m, n) not equal (3, 3) in the case where n = 7. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1337 / 1352
页数:16
相关论文
共 50 条
  • [1] The cycle-complete graph Ramsey numbers R(C7, K9) and R(C8, K9)
    Baniabedalruhman, A.
    Alrifai, Ahmad
    Al-Rhayyel, Ahmad A.
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 325 - 335
  • [2] The cycle-complete graph Ramsey numbers R(C7, K9) and R(C8, K9)
    Baniabedalruhman, A.
    Alrifai, Ahmad
    Al-Rhayyel, Ahmad A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 325 - 335
  • [3] The cycle-complete graph Ramsey numbers R(C7, K9) and R(C8, K9)
    Baniabedalruhman, A.
    Alrifai, Ahmad
    Al-Rhayyel, Ahmad A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 325 - 335
  • [4] The Ramsey number R(C8, K8)
    Zhang, Yunqing
    Zhang, Ke Min
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1084 - 1090
  • [5] 一个广义Ramsey数r(C5,K7)(英文)
    白路锋
    宋洪雪
    李雨生
    广西师范学院学报(自然科学版), 2003, (自然科学版) : 35 - 39
  • [6] 一个广义Ramsey数r(C5,K7)(英文)
    白路锋
    宋洪雪
    李雨生
    广西师范学院学报(自然科学版), 2003, (04) : 35 - 39
  • [7] THE THETA-COMPLETE GRAPH RAMSEY NUMBER R(θn, K7); n = 7; n ≥ 14
    Baniabedalruhman, A.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (03): : 517 - 526
  • [8] All Ramsey numbers r(K3,G) for connected graphs of order 7 and 8
    Brinkmann, G
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (02): : 129 - 140
  • [9] THE CYCLE-COMPLETE GRAPH RAMSEY NUMBERS R(Cn, K8), FOR 10 ≤ n ≤ 15
    Baniabedalruhman, A.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (04): : 703 - 718
  • [10] R(C6, K5)=21 and R(C7, K5)=25
    Sheng, YJ
    Ru, HY
    Min, ZK
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (04) : 561 - 567