Cycle-Complete Ramsey Numbers

被引:9
|
作者
Keevash, Peter [1 ]
Long, Eoin [1 ]
Skokan, Jozef [2 ,3 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] London Sch Econ, Dept Math, Houghton St, London WC2A 2AE, England
[3] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
D O I
10.1093/imrn/rnz119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Ramsey number r(C-l, K-n) is the smallest natural number N such that every red/blue edge colouring of a clique of order N contains a red cycle of length l or a blue clique of order n. In 1978, Erdos, Faudree, Rousseau, and Schelp conjectured that r(C-l, K-n) = (l - 1)(n - 1) + 1 for l >= n >= 3 provided (l, n) not equal (3, 3). We prove that, for some absolute constant C >= 1, we have r(C-l, K-n) = (l - 1)(n - 1) + 1 provided l >= Clog n/log log n. Up to the value of C this is tight since we also show that, for any epsilon > 0 and n > n(0)(epsilon), we have r(C-l, K-n) >> (l - 1)(n - 1) + 1 for all 3 <= l <= (1 - epsilon) log n/log log n. This proves the conjecture of Erdos, Faudree, Rousseau, and Schelp for large l, a stronger form of the conjecture due to Nikiforov, and answers (up to multiplicative constants) two further questions of Erdos, Faudree, Rousseau, and Schelp.
引用
收藏
页码:277 / 302
页数:26
相关论文
共 50 条