Cycle-Complete Ramsey Numbers

被引:9
|
作者
Keevash, Peter [1 ]
Long, Eoin [1 ]
Skokan, Jozef [2 ,3 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] London Sch Econ, Dept Math, Houghton St, London WC2A 2AE, England
[3] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
D O I
10.1093/imrn/rnz119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Ramsey number r(C-l, K-n) is the smallest natural number N such that every red/blue edge colouring of a clique of order N contains a red cycle of length l or a blue clique of order n. In 1978, Erdos, Faudree, Rousseau, and Schelp conjectured that r(C-l, K-n) = (l - 1)(n - 1) + 1 for l >= n >= 3 provided (l, n) not equal (3, 3). We prove that, for some absolute constant C >= 1, we have r(C-l, K-n) = (l - 1)(n - 1) + 1 provided l >= Clog n/log log n. Up to the value of C this is tight since we also show that, for any epsilon > 0 and n > n(0)(epsilon), we have r(C-l, K-n) >> (l - 1)(n - 1) + 1 for all 3 <= l <= (1 - epsilon) log n/log log n. This proves the conjecture of Erdos, Faudree, Rousseau, and Schelp for large l, a stronger form of the conjecture due to Nikiforov, and answers (up to multiplicative constants) two further questions of Erdos, Faudree, Rousseau, and Schelp.
引用
收藏
页码:277 / 302
页数:26
相关论文
共 50 条
  • [41] ON RAMSEY NUMBERS OF FORESTS VERSUS NEARLY COMPLETE GRAPHS
    CHARTRAND, G
    GOULD, RJ
    POLIMENI, AD
    JOURNAL OF GRAPH THEORY, 1980, 4 (02) : 233 - 239
  • [42] RAMSEY NUMBERS FOR CLASS OF EDGELESS, COMPLETE AND STAR GRAPHS
    Kaliraj, K.
    Kumar, Naresh H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 220 - 224
  • [43] Complete Graph-Tree Planar Ramsey Numbers
    Yaojun Chen
    Xiaolan Hu
    Graphs and Combinatorics, 2019, 35 : 1659 - 1671
  • [44] Ramsey numbers for graph sets versus complete graphs
    Faudree, R
    Harborth, H
    Mengersen, I
    UTILITAS MATHEMATICA, 1996, 50 : 85 - 95
  • [45] Anti-Ramsey numbers in complete split graphs
    Gorgol, Izolda
    DISCRETE MATHEMATICS, 2016, 339 (07) : 1944 - 1949
  • [46] Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems
    Christian Trudeau
    Social Choice and Welfare, 2014, 42 : 941 - 957
  • [47] Characterizing Cycle-Complete Dissimilarities in Terms of Associated Indexed 2-Hierarchies
    Ando, Kazutoshi
    Shoji, Kazuya
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2018), 2018, 11346 : 640 - 650
  • [48] CYCLE-STAR RAMSEY NUMBERS - PRELIMINARY REPORT
    LAWRENCE, SL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (04): : A420 - A420
  • [49] The independence number of graphs with a forbidden cycle and Ramsey numbers
    Li, YS
    Zang, WA
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2003, 7 (04) : 353 - 359
  • [50] Three Results on Cycle-Wheel Ramsey Numbers
    Yanbo Zhang
    Hajo Broersma
    Yaojun Chen
    Graphs and Combinatorics, 2015, 31 : 2467 - 2479