Bootstrap inference when using multiple imputation

被引:264
|
作者
Schomaker, Michael [1 ]
Heumann, Hristian [2 ]
机构
[1] Univ Cape Town, Ctr Infect Dis Epidemiol & Res, Falmouth Bldg, ZA-7925 Cape Town, South Africa
[2] Ludwig Maximilians Univ Munchen, Inst Stat, Munich, Germany
关键词
causal inference; g-methods; HIV; missing data; resampling; MISSING DATA; ANTIRETROVIRAL THERAPY; CHAINED EQUATIONS; MORTALITY; AIDS; REGRESSION; CHILDREN; PROGRAM; MODELS; IEDEA;
D O I
10.1002/sim.7654
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, a method for which no standard errors are available.
引用
收藏
页码:2252 / 2266
页数:15
相关论文
共 50 条
  • [41] Multiple imputation methods for inference on cumulative incidence with missing cause of failure
    Lee, Minjung
    Cronin, Kathleen A.
    Gail, Mitchell H.
    Dignam, James J.
    Feuer, Eric J.
    [J]. BIOMETRICAL JOURNAL, 2011, 53 (06) : 974 - 993
  • [42] Functional inference in semiparametric models using the piggyback bootstrap
    Dixon, JR
    Kosorok, MR
    Lee, BL
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2005, 57 (02) : 255 - 277
  • [43] USING THE SMOOTHED BOOTSTRAP FOR STATISTICAL INFERENCE FOR MARKOV CHAINS
    Polansky, Alan M.
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2009, 25 (04): : 553 - 570
  • [44] Simple bootstrap statistical inference using the SAS system
    Cole, SR
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 1999, 60 (01) : 79 - 82
  • [45] Fast and wild: Bootstrap inference in Stata using boottest
    Roodman, David
    MacKinnon, James G.
    Nielsen, Morten Orregaard
    Webb, Matthew D.
    [J]. STATA JOURNAL, 2019, 19 (01): : 4 - 60
  • [46] STATISTICAL INFERENCE WITH PLSC USING BOOTSTRAP CONFIDENCE INTERVALS
    Aguirre-Urreta, Miguel I.
    Ronkko, Mikko
    [J]. MIS QUARTERLY, 2018, 42 (03) : 1001 - +
  • [47] Bootstrap inference in econometrics
    MacKinnon, JG
    [J]. CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2002, 35 (04): : 615 - 645
  • [48] Bootstrap-multiple-imputation; high-dimensional model validation with missing data
    Chang, Billy
    Demetrashvili, Nino
    Kowgier, Matthew
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (02): : 202 - 204
  • [49] Multiple imputation of multiple multi-item scales when a full imputation model is infeasible Medical Research Methodology
    Plumpton C.O.
    Morris T.
    Hughes D.A.
    White I.R.
    [J]. BMC Research Notes, 9 (1)
  • [50] Multiple imputation for non-response when estimating HIV prevalence using survey data
    Chinomona, Amos
    Mwambi, Henry
    [J]. BMC PUBLIC HEALTH, 2015, 15