Bootstrap inference when using multiple imputation

被引:264
|
作者
Schomaker, Michael [1 ]
Heumann, Hristian [2 ]
机构
[1] Univ Cape Town, Ctr Infect Dis Epidemiol & Res, Falmouth Bldg, ZA-7925 Cape Town, South Africa
[2] Ludwig Maximilians Univ Munchen, Inst Stat, Munich, Germany
关键词
causal inference; g-methods; HIV; missing data; resampling; MISSING DATA; ANTIRETROVIRAL THERAPY; CHAINED EQUATIONS; MORTALITY; AIDS; REGRESSION; CHILDREN; PROGRAM; MODELS; IEDEA;
D O I
10.1002/sim.7654
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, a method for which no standard errors are available.
引用
收藏
页码:2252 / 2266
页数:15
相关论文
共 50 条
  • [21] A Comparison of Posterior Simulation and Inference by Combining Rules for Multiple Imputation
    Si, Yajuan
    Reiter, Jerome P.
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2011, 5 (02) : 335 - 347
  • [22] A comparison of posterior simulation and inference by combining rules for multiple imputation
    Si Y.
    Reiter J.P.
    [J]. Journal of Statistical Theory and Practice, 2011, 5 (2) : 335 - 347
  • [23] A semiparametric multiply robust multiple imputation method for causal inference
    Gochanour, Benjamin
    Chen, Sixia
    Beebe, Laura
    Haziza, David
    [J]. METRIKA, 2023, 86 (05) : 517 - 542
  • [24] Alternative Multiple Imputation Inference for Mean and Covariance Structure Modeling
    Lee, Taehun
    Cai, Li
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2012, 37 (06) : 675 - 702
  • [25] Discussion: Efficiency and self-efficiency with multiple imputation inference
    Meng, XL
    Romero, M
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2003, 71 (03) : 607 - 618
  • [26] Alternative Multiple Imputation Inference for Categorical Structural Equation Modeling
    Chung, Seungwon
    Cai, Li
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2018, 53 (01) : 148 - 148
  • [27] Multiple Imputation Inference with Integer-Valued Point Estimates
    Liu, Bo
    Reiter, Jerome P.
    [J]. AMERICAN STATISTICIAN, 2022, 76 (04): : 323 - 328
  • [28] A semiparametric multiply robust multiple imputation method for causal inference
    Benjamin Gochanour
    Sixia Chen
    Laura Beebe
    David Haziza
    [J]. Metrika, 2023, 86 : 517 - 542
  • [29] Combining multiple imputation and bootstrap in the analysis of cost-effectiveness trial data
    Brand, Jaap
    van Buuren, Stef
    le Cessie, Saskia
    van den Hout, Wilbert
    [J]. STATISTICS IN MEDICINE, 2019, 38 (02) : 210 - 220
  • [30] BOOTSTRAP INFERENCE FOR MULTIPLE CHANGE-POINTS IN TIME SERIES
    Ng, Wai Leong
    Pan, Shenyi
    Yau, Chun Yip
    [J]. ECONOMETRIC THEORY, 2022, 38 (04) : 752 - 792