Bootstrap inference when using multiple imputation

被引:264
|
作者
Schomaker, Michael [1 ]
Heumann, Hristian [2 ]
机构
[1] Univ Cape Town, Ctr Infect Dis Epidemiol & Res, Falmouth Bldg, ZA-7925 Cape Town, South Africa
[2] Ludwig Maximilians Univ Munchen, Inst Stat, Munich, Germany
关键词
causal inference; g-methods; HIV; missing data; resampling; MISSING DATA; ANTIRETROVIRAL THERAPY; CHAINED EQUATIONS; MORTALITY; AIDS; REGRESSION; CHILDREN; PROGRAM; MODELS; IEDEA;
D O I
10.1002/sim.7654
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, a method for which no standard errors are available.
引用
收藏
页码:2252 / 2266
页数:15
相关论文
共 50 条
  • [31] Multiple Imputation When Rate of Change is the Outcome of Interest
    Desai, Manisha
    Mitani, Aya A.
    Bryson, Susan W.
    Robinson, Thomas
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (01) : 160 - 192
  • [32] Tests of Multivariate Hypotheses when using Multiple Imputation for Missing Data and Disclosure Limitation
    Kinney, Satkartar K.
    Reiter, Jerome P.
    [J]. JOURNAL OF OFFICIAL STATISTICS, 2010, 26 (02) : 301 - 315
  • [33] When Can Multiple Imputation Improve Regression Estimates?
    Arel-Bundock, Vincent
    Pelc, Krzysztof J.
    [J]. POLITICAL ANALYSIS, 2018, 26 (02) : 240 - 245
  • [34] Effect of Variable Selection Strategy on the Performance of Prognostic Models When Using Multiple Imputation
    Austin, Peter C.
    Lee, Douglas S.
    Ko, Dennis T.
    White, Ian R.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2019, 12 (11):
  • [35] ON USING THE BOOTSTRAP FOR MULTIPLE COMPARISONS
    Westfall, Peter H.
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1187 - 1205
  • [36] Inference for imputation estimators
    Robins, JM
    Wang, NS
    [J]. BIOMETRIKA, 2000, 87 (01) : 113 - 124
  • [37] A note on approximate Bayesian bootstrap imputation
    Kim, JK
    [J]. BIOMETRIKA, 2002, 89 (02) : 470 - 477
  • [38] Bootstrap imputation minimized misclassification bias when measuring Colles' fracture prevalence and its associations using health administrative data
    van Walraven, Carl
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2018, 96 : 93 - 100
  • [40] Functional inference in semiparametric models using the piggyback bootstrap
    John R. Dixon
    Michael R. Kosorok
    Bee Leng Lee
    [J]. Annals of the Institute of Statistical Mathematics, 2005, 57 : 255 - 277