Thermal management of microwave power heterojunction bipolar transistors

被引:10
|
作者
Bozada, C [1 ]
Cerny, C [1 ]
DeSalvo, G [1 ]
Dettmer, R [1 ]
Ebel, J [1 ]
Gillespie, J [1 ]
Havasy, C [1 ]
Jenkins, T [1 ]
Ito, C [1 ]
Nakano, K [1 ]
Pettiford, C [1 ]
Quach, T [1 ]
Sewell, J [1 ]
Via, GD [1 ]
Anholt, R [1 ]
机构
[1] GATEWAY MODELING INC,MINNEAPOLIS,MN 55414
关键词
D O I
10.1016/S0038-1101(97)00121-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A comprehensive study of the device layout effects on thermal resistance in thermally-shunted heterojunction bipolar transistors (HBTs) was completed. The thermal resistance scales linearly with emitter dot diameter for single element HBTs. For multiple emitter element devices, the thermal resistance scales with area. HBTs with dot geometrics have lower thermal impedance than bar HBTs with equivalent emitter area. The thermal resistance of a 200 mu m(2) emitter area device was reduced from 266 degrees C/W to 146 degrees C/W by increasing the shunt thickness from 3 mu m to 20 mu m and placing a thermal shunt landing between the fingers. Also, power-added efficiencies at 10 GHz were improved from 30% to 68% by this thermal resistance reduction. Published by Elsevier Science Ltd.
引用
收藏
页码:1667 / 1673
页数:7
相关论文
共 50 条
  • [31] Graphene Packaging for Thermal Management of Innovative Complementary Collector-Up Heterojunction Bipolar Transistors
    Du, Wei-Min
    Tseng, H. C.
    [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2018, 8 (11): : 1923 - 1927
  • [32] Thermal characterization of thermally-shunted heterojunction bipolar transistors
    Sewell, J
    Liou, LL
    Barlage, D
    Barrette, J
    Bozada, C
    Dettmer, R
    Fitch, R
    Jenkins, T
    Lee, R
    Mack, M
    Trombley, G
    Watson, P
    [J]. IEEE ELECTRON DEVICE LETTERS, 1996, 17 (01) : 19 - 21
  • [33] Thermal runaway tolerance in double-heterojunction bipolar transistors
    Hidaka, Osamu
    Morizuka, Kouhei
    Mochizuki, Hiroshi
    [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1995, 34 (2 B): : 886 - 888
  • [34] Microwave noise in InP/InGaAs and GaAs/AlGaAs heterojunction bipolar transistors
    Sakalas, P
    Garcia, M
    Zirath, H
    Willander, M
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2001, 16 (01) : 14 - 20
  • [35] Thermal impedances of multi-finger heterojunction bipolar transistors
    Anholt, R
    [J]. SOLID-STATE ELECTRONICS, 1998, 42 (05) : 865 - 869
  • [36] Simulation of electrical properties of InP/InGaAs heterojunction bipolar transistors in microwave
    Berrichi, Yamina
    Ghaffour, Kheireddine
    [J]. DIELECTRIC MATERIALS AND APPLICATIONS, ISYDMA '2016, 2016, 1 : 67 - 70
  • [37] A practical method to extract the thermal resistance for heterojunction bipolar transistors
    Pfost, M
    Kubrak, V
    Brenner, P
    [J]. ESSDERC 2003: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2003, : 335 - 338
  • [38] UNILATERAL GAIN OF HETEROJUNCTION BIPOLAR-TRANSISTORS AT MICROWAVE-FREQUENCIES
    PRASAD, S
    LEE, W
    FONSTAD, CG
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1988, 35 (12) : 2288 - 2294
  • [39] Power performance of thermally-shunted heterojunction bipolar transistors
    Jenkins, T
    Bozada, C
    Cerny, C
    DeSalvo, G
    Dettmer, R
    Ebel, J
    Gillespie, J
    Havasy, C
    Kehias, L
    Nakano, K
    Pettiford, C
    Quach, T
    Sewell, J
    Via, D
    Anholt, R
    [J]. 1997 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS I-III: HIGH FREQUENCIES IN HIGH PLACES, 1997, : 949 - 952
  • [40] Failure mechanisms in AlGaAs/GaAs power heterojunction bipolar transistors
    Liu, W
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (02) : 220 - 227