Quasi-exact solutions for the Bohr Hamiltonian with sextic oscillator potential

被引:0
|
作者
Buganu, P. [1 ]
Budaca, R. [1 ,4 ]
Chabab, M. [3 ]
Lahbas, A. [2 ,3 ]
Oulne, M. [3 ]
机构
[1] Natl Inst Phys & Nucl Engn, Dept Theoret Phys, Str Reactorului 30,POB-MG6, RO-077125 Bucharest, Romania
[2] Mohammed V Univ Rabat, Fac Sci, Dept Phys, ESMaR, Rabat, Morocco
[3] Cadi Ayyad Univ, Fac Sci Semlalia, Dept Phys, LPHEA, POB 2390, Marrakech 40000, Morocco
[4] Acad Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
关键词
NUCLEAR-DATA SHEETS; MODEL DESCRIPTION; COEXISTENCE;
D O I
10.1088/1742-6596/1555/1/012012
中图分类号
O59 [应用物理学];
学科分类号
摘要
A discussion on the quasi-exact solution of the Bohr Hamiltonian with sextic oscillator potential is made by attracting the attention on some recent results of its application to the phase transition from spherical vibrator to a gamma-unstable system. More precisely, it is underlined the importance of the solvability order on the structure of the states, especially in the critical point, respectively, in the deformed region of the phase transition.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Algebraic approach to quasi-exact solutions of the Dirac-Coulomb problem
    H. Panahi
    M. Baradaran
    [J]. The European Physical Journal Plus, 128
  • [22] Bohr Hamiltonian with sextic potential for ?-rigid prolate nuclei with deformation-dependent mass term
    Oulne, M.
    Tagdamte, I.
    [J]. PHYSICAL REVIEW C, 2022, 106 (06)
  • [23] Application of the Bohr Hamiltonian with a double-well sextic potential to collective states in Mo isotopes
    Budaca, R.
    Budaca, A., I
    Buganu, P.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2019, 46 (12)
  • [24] Algebraic approach to quasi-exact solutions of the Dirac-Coulomb problem
    Panahi, H.
    Baradaran, M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (04): : 1 - 6
  • [25] EXACT ANALYTIC SOLUTIONS FOR THE QUANTUM-MECHANICAL SEXTIC ANHARMONIC-OSCILLATOR
    DUTTA, AK
    WILLEY, RS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) : 892 - 900
  • [26] Quasi-exact solvability of Inozemtsev models
    Takemura, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41): : 8867 - 8881
  • [27] THE 2-D SEXTIC HAMILTONIAN OSCILLATOR
    Molero, F. J.
    Van der Meer, J. C.
    Ferrer, S.
    Cespedes, F. J.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (06):
  • [28] Exact solutions of the sextic oscillator from the bi-confluent Heun equation
    Levai, Geza
    Ishkhanyan, Artur M.
    [J]. MODERN PHYSICS LETTERS A, 2019, 34 (18)
  • [29] Quasi-exact solvability of Dirac equations
    He, Choon-Lin
    [J]. Differential Geometry and Physics, 2006, 10 : 232 - 240
  • [30] Quasi-exact solution to the Dirac equation for the hyperbolic-secant potential
    Hartmann, R. R.
    Portnoi, M. E.
    [J]. PHYSICAL REVIEW A, 2014, 89 (01):