Bohr Hamiltonian with sextic potential for ?-rigid prolate nuclei with deformation-dependent mass term

被引:3
|
作者
Oulne, M. [1 ]
Tagdamte, I. [1 ]
机构
[1] Cadi Ayyad Univ, Fac Sci Semlalia, Dept Phys, High Energy Phys & Astrophys Lab, POB 2390, Marrakech 40000, Morocco
关键词
DATA SHEETS; ELECTRONS; MOTION;
D O I
10.1103/PhysRevC.106.064313
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The main aim of the present paper is to solve the eigenvalues problem with the Bohr collective Hamiltonian for gamma -rigid nuclei within a model we have elaborated by combining two model approaches: the quantum mechanical formalism, namely, deformation-dependent mass formalism (DDM), and the anharmonic sextic oscillator potential for the variable 0 and gamma = 0. The model developed in this way is conventionally called the sextic and DDM approach. Analytical expressions for energy spectra are conjointly derived by means of quasiexact solvability and a quantum perturbation method. Due to the scaling property of the problem, the energy and B(E2) transition ratios depend on two free parameters apart from an integer number which limits the number of allowed states. Numerical results are given for 35 nuclei-98-108Ru, 100-102Mo, 116-130Xe, 180-196Pt, 172Os, 146-150Nd, 132-134Ce, 154Gd, 156Dy, and 150-152Sm-revealing a good agreement with experiment. Moreover, as proved for the first time by Bonatsos et al. [D. Bonatsos, P. Georgoudis, D. Lenis, N. Minkov, and C. Quesne, Phys. Lett. B 683, 264 (2010)], the dependence of the mass on the deformation with the sextic potential moderates the increase of the moment of inertia with the deformation, removing an important drawback that has been revealed in the constant mass case [Buganu and Budaca, J. Phys. G: Nucl. Part. Phys. 42, 105106 (2015)]. Additionally, the correlation between the DDM and the minimal length formalism persists for the sextic potential. Finally, the DDM effects on the shape phase transition for the most numerous isotopic chains, namely, Ru, Xe, Nd, and Pt, have been duly investigated.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Bohr Hamiltonian with a deformation-dependent mass term for the Kratzer potential
    Bonatsos, Dennis
    Georgoudis, P. E.
    Minkov, N.
    Petrellis, D.
    Quesne, C.
    [J]. PHYSICAL REVIEW C, 2013, 88 (03):
  • [2] Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential
    Bonatsos, Dennis
    Georgoudis, P. E.
    Lenis, D.
    Minkov, N.
    Quesne, C.
    [J]. PHYSICAL REVIEW C, 2011, 83 (04):
  • [3] Bohr Hamiltonian with deformation-dependent mass term
    Bonatsos, Dennis
    Georgoudis, P.
    Lenis, D.
    Minkov, N.
    Quesne, C.
    [J]. PHYSICS LETTERS B, 2010, 683 (4-5) : 264 - 271
  • [4] Deformation-dependent mass Bohr Hamiltonian with Anharmonic potential for triaxial nuclei
    Kamargue, P. Mounouna
    Zarma, A.
    Ema'a, J. M. Ema'a
    Yamino, S. Doka
    Ben Bolie, G. H.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2022, 31 (09):
  • [5] The Energy Analysis in γ-Unstable Nuclei Bohr Hamiltonian for Morse Potential with Deformation-dependent Mass Term
    Pratiwi, Beta Nur
    Suparmi, A.
    Cari, C.
    Pramono, Subur
    [J]. INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2019, 2019, 2202
  • [6] Bohr Hamiltonian with deformation-dependent mass
    Bonatsos, Dennis
    Minkov, N.
    Petrellis, D.
    Quesne, C.
    [J]. NUBA CONFERENCE SERIES -1: NUCLEAR PHYSICS AND ASTROPHYSICS, 2015, 590
  • [7] Bohr Hamiltonian with Hulthen plus ring-shaped potential for triaxial nuclei with Deformation-Dependent Mass term
    Adahchour, A.
    El Korchi, S. Ait
    El Batoul, A.
    Lahbas, A.
    Oulne, M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (07):
  • [8] Bohr Hamiltonian with Hulthén plus ring-shaped potential for triaxial nuclei with Deformation-Dependent Mass term
    A. Adahchour
    S. Ait El Korchi
    A. El Batoul
    A. Lahbas
    M. Oulne
    [J]. The European Physical Journal Plus, 135
  • [9] Sextic potential for γ-rigid prolate nuclei
    Buganu, P.
    Budaca, R.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2015, 42 (10)
  • [10] Bohr Hamiltonian with a deformation-dependent mass term: physical meaning of the free parameter
    Bonatsos, Dennis
    Minkov, N.
    Petrellis, D.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2015, 42 (09)