Quasi-exact solutions for the Bohr Hamiltonian with sextic oscillator potential

被引:0
|
作者
Buganu, P. [1 ]
Budaca, R. [1 ,4 ]
Chabab, M. [3 ]
Lahbas, A. [2 ,3 ]
Oulne, M. [3 ]
机构
[1] Natl Inst Phys & Nucl Engn, Dept Theoret Phys, Str Reactorului 30,POB-MG6, RO-077125 Bucharest, Romania
[2] Mohammed V Univ Rabat, Fac Sci, Dept Phys, ESMaR, Rabat, Morocco
[3] Cadi Ayyad Univ, Fac Sci Semlalia, Dept Phys, LPHEA, POB 2390, Marrakech 40000, Morocco
[4] Acad Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
关键词
NUCLEAR-DATA SHEETS; MODEL DESCRIPTION; COEXISTENCE;
D O I
10.1088/1742-6596/1555/1/012012
中图分类号
O59 [应用物理学];
学科分类号
摘要
A discussion on the quasi-exact solution of the Bohr Hamiltonian with sextic oscillator potential is made by attracting the attention on some recent results of its application to the phase transition from spherical vibrator to a gamma-unstable system. More precisely, it is underlined the importance of the solvability order on the structure of the states, especially in the critical point, respectively, in the deformed region of the phase transition.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Semi-exact solutions of sextic potential plus a centrifugal term
    Dong, Qian
    Sun, Guo-Hua
    He, Bing
    Dong, Shi-Hai
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (10) : 2197 - 2203
  • [42] Quasi-exact Sequences of S-Acts
    Reza Aminizadeh
    Hamid Rasouli
    Abolfazl Tehranian
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2225 - 2235
  • [43] Quasi-Exact Sequence and Finitely Presented Modules
    Madanshekaf, A.
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2008, 3 (02): : 49 - 53
  • [44] BENDER-DUNNE ORTHOGONAL POLYNOMIALS, QUASI-EXACT SOLVABILITY AND ASYMPTOTIC ITERATION METHOD FOR RABI HAMILTONIAN
    Yahiaoui, S. -A.
    Bentaiba, M.
    [J]. ACTA PHYSICA POLONICA B, 2011, 42 (08): : 1755 - 1765
  • [45] On the quasi-exact solvability of a singular potential in D-dimensions: confined and unconfined
    Mustafa, O
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (03) : 351 - 355
  • [46] Quasi-exact solvability in a general polynomial setting
    Gomez-Ullate, D.
    Kamran, N.
    Milson, R.
    [J]. INVERSE PROBLEMS, 2007, 23 (05) : 1915 - 1942
  • [47] Quasi-exact solvability in local field theory
    Ushveridze, AG
    [J]. MODERN PHYSICS LETTERS A, 1998, 13 (08) : 593 - 604
  • [48] QUASI-EXACT STATES IN THE LANCZOS RECURRENT PICTURE
    ZNOJIL, M
    [J]. PHYSICS LETTERS A, 1991, 161 (03) : 191 - 196
  • [49] Analytical solution of Bohr Hamiltonian and extended form of sextic potential using bi-confluent Heun functions
    H. Sobhani
    A. N. Ikot
    H. Hassanabadi
    [J]. The European Physical Journal Plus, 132
  • [50] Analytical solution of Bohr Hamiltonian and extended form of sextic potential using bi-confluent Heun functions
    Sobhani, H.
    Ikot, A. N.
    Hassanabadi, H.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (05):