Analysis of Anisotropic Nonlocal Diffusion Models: Well-Posedness of Fractional Problems for Anomalous Transport

被引:1
|
作者
D'Elia, Marta [1 ]
Gulian, Mamikon [1 ]
机构
[1] Sandia Natl Labs, Data Sci & Comp, Livermore, CA 94550 USA
关键词
Nonlocal models; fractional models; anomalous diffusion; anisotropic diffusion; solute transport; VOLUME-CONSTRAINED PROBLEMS; BOUNDARY-CONDITIONS; PERIDYNAMIC MODEL; VECTOR CALCULUS; DISPERSION; APPROXIMATION; EQUATIONS; DOMAINS; PHYSICS;
D O I
10.4208/nmtma.OA-2022-0001s
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the well-posedness of an anisotropic, nonlocal diffusion equation. Establishing an equivalence between weighted and unweighted anisotropic nonlocal diffusion operators in the vein of unified nonlocal vector calculus, we apply our analysis to a class of fractional-order operators and present rigorous estimates for the solution of the corresponding anisotropic anomalous diffusion equation. Furthermore, we extend our analysis to the anisotropic diffusion-advection equation and prove well-posedness for fractional orders s is an element of[0.5, 1). We also present an application of the advection-diffusion equation to anomalous transport of solutes.
引用
收藏
页码:851 / 875
页数:25
相关论文
共 50 条
  • [41] Well-posedness of the stochastic time-fractional diffusion and wave equations and inverse random source problems
    Lassas, Matti
    Li, Zhiyuan
    Zhang, Zhidong
    INVERSE PROBLEMS, 2023, 39 (08)
  • [42] LOCAL WELL-POSEDNESS OF NONLOCAL BURGERS EQUATIONS
    Benzoni-Gavage, Sylvie
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (3-4) : 303 - 320
  • [43] Well-Posedness for Fractional Cauchy Problems Involving Discrete Convolution Operators
    Gonzalez-Camus, Jorge
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
  • [44] Well-posedness and numerical approximation of tempered fractional terminal value problems
    Maria Luísa Morgado
    Magda Rebelo
    Fractional Calculus and Applied Analysis, 2017, 20 : 1239 - 1262
  • [45] A NOTE ON THE WELL-POSEDNESS OF TERMINAL VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS
    Diethelm, Kai
    Ford, Neville J.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2018, 30 (03) : 371 - 376
  • [46] Well-posedness of the initial-boundary value problems for the time-fractional degenerate diffusion equations
    Smadiyeva, A. G.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 107 (03): : 145 - 151
  • [47] Well-Posedness for Fractional Cauchy Problems Involving Discrete Convolution Operators
    Jorge González-Camus
    Mediterranean Journal of Mathematics, 2023, 20
  • [48] WELL-POSEDNESS AND NUMERICAL APPROXIMATION OF TEMPERED FRACTIONAL TERMINAL VALUE PROBLEMS
    Morgado, Maria Luisa
    Rebelo, Magda
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) : 1239 - 1262
  • [49] Well-posedness of filtering problems for stochastic linear DAE models
    Gerdin, Markus
    Glad, Torkel
    Ljung, Lennart
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 350 - 355
  • [50] Global well-posedness for incompressible flow in porous media with partial diffusion or fractional diffusion
    Guo, Yana
    Shang, Haifeng
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (06):