Analysis of Anisotropic Nonlocal Diffusion Models: Well-Posedness of Fractional Problems for Anomalous Transport

被引:1
|
作者
D'Elia, Marta [1 ]
Gulian, Mamikon [1 ]
机构
[1] Sandia Natl Labs, Data Sci & Comp, Livermore, CA 94550 USA
关键词
Nonlocal models; fractional models; anomalous diffusion; anisotropic diffusion; solute transport; VOLUME-CONSTRAINED PROBLEMS; BOUNDARY-CONDITIONS; PERIDYNAMIC MODEL; VECTOR CALCULUS; DISPERSION; APPROXIMATION; EQUATIONS; DOMAINS; PHYSICS;
D O I
10.4208/nmtma.OA-2022-0001s
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the well-posedness of an anisotropic, nonlocal diffusion equation. Establishing an equivalence between weighted and unweighted anisotropic nonlocal diffusion operators in the vein of unified nonlocal vector calculus, we apply our analysis to a class of fractional-order operators and present rigorous estimates for the solution of the corresponding anisotropic anomalous diffusion equation. Furthermore, we extend our analysis to the anisotropic diffusion-advection equation and prove well-posedness for fractional orders s is an element of[0.5, 1). We also present an application of the advection-diffusion equation to anomalous transport of solutes.
引用
收藏
页码:851 / 875
页数:25
相关论文
共 50 条