Analysis of Anisotropic Nonlocal Diffusion Models: Well-Posedness of Fractional Problems for Anomalous Transport

被引:1
|
作者
D'Elia, Marta [1 ]
Gulian, Mamikon [1 ]
机构
[1] Sandia Natl Labs, Data Sci & Comp, Livermore, CA 94550 USA
关键词
Nonlocal models; fractional models; anomalous diffusion; anisotropic diffusion; solute transport; VOLUME-CONSTRAINED PROBLEMS; BOUNDARY-CONDITIONS; PERIDYNAMIC MODEL; VECTOR CALCULUS; DISPERSION; APPROXIMATION; EQUATIONS; DOMAINS; PHYSICS;
D O I
10.4208/nmtma.OA-2022-0001s
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the well-posedness of an anisotropic, nonlocal diffusion equation. Establishing an equivalence between weighted and unweighted anisotropic nonlocal diffusion operators in the vein of unified nonlocal vector calculus, we apply our analysis to a class of fractional-order operators and present rigorous estimates for the solution of the corresponding anisotropic anomalous diffusion equation. Furthermore, we extend our analysis to the anisotropic diffusion-advection equation and prove well-posedness for fractional orders s is an element of[0.5, 1). We also present an application of the advection-diffusion equation to anomalous transport of solutes.
引用
收藏
页码:851 / 875
页数:25
相关论文
共 50 条
  • [31] WELL-POSEDNESS OF ABSTRACT DISTRIBUTED-ORDER FRACTIONAL DIFFUSION EQUATIONS
    Jia, Junxiong
    Peng, Jigen
    Li, Kexue
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 605 - 621
  • [32] WELL-POSEDNESS RESULTS FOR NONLINEAR FRACTIONAL DIFFUSION EQUATION WITH MEMORY QUANTITY
    Tuan, Nguyen Huy
    Nguyen, Anh Tuan
    Debbouche, Amar
    Antonov, Valery
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (10): : 2815 - 2838
  • [33] Well-posedness and regularity results for a class of fractional Langevin diffusion equations
    Sen Wang
    Xian-Feng Zhou
    Wei Jiang
    Denghao Pang
    Fractional Calculus and Applied Analysis, 2023, 26 : 2675 - 2719
  • [34] Well-Posedness of Equations with Fractional Derivative
    Shang Quan BU Department of Mathematical Science
    Acta Mathematica Sinica,English Series, 2010, 26 (07) : 1223 - 1232
  • [35] Well-posedness for a class of biological diffusion models with hysteresis effect
    Jiashan Zheng
    Yifu Wang
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 771 - 783
  • [36] Well-posedness of fractional parabolic equations
    Allaberen Ashyralyev
    Boundary Value Problems, 2013
  • [37] Well-posedness for the nonlocal nonlinear Schrodinger equation
    Peres de Moura, Roger
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 1254 - 1267
  • [38] Well-posedness of equations with fractional derivative
    Shang Quan Bu
    Acta Mathematica Sinica, English Series, 2010, 26 : 1223 - 1232
  • [39] WELL-POSEDNESS AND REGULARIZATION FOR NONLOCAL DIFFUSION EQUATION WITH RIEMANN-LIOUVILLE DERIVATIVE
    Wang, Renhai
    Van Dai, Hoang
    Tuan, Nguyen Anh
    Can, Nguyen Huu
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)
  • [40] Well-posedness for a class of biological diffusion models with hysteresis effect
    Zheng, Jiashan
    Wang, Yifu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 771 - 783