Sparse Representation in Fourier and Local Bases Using ProSparse: A Probabilistic Analysis

被引:1
|
作者
Lu, Yue M. [1 ]
Onativia, Jon [2 ,3 ]
Dragotti, Pier Luigi [2 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[3] Egile, Mendaro 20850, Spain
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Sparse representation; union of bases; Prony's method; uncertainty principle; average-case analysis; SIGNAL RECOVERY; UNCERTAINTY PRINCIPLES; CORRUPTED SIGNALS; PAIRS;
D O I
10.1109/TIT.2017.2735450
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding the sparse representation of a signal in an overcomplete dictionary has attracted a lot of attention over the past years. This paper studies ProSparse, a new polynomial complexity algorithm that solves the sparse representation problem when the underlying dictionary is the union of a Vandermonde matrix and a banded matrix. Unlike our previous work, which establishes deterministic (worst-case) sparsity bounds for ProSparse to succeed, this paper presents a probabilistic average-case analysis of the algorithm. Based on a generating-function approach, closed-form expressions for the exact success probabilities of ProSparse are given. The success probabilities are also analyzed in the high-dimensional regime. This asymptotic analysis characterizes a sharp phase transition phenomenon regarding the performance of the algorithm.
引用
收藏
页码:2639 / 2647
页数:9
相关论文
共 50 条
  • [41] Speaker Recognition Using Sparse Probabilistic Linear Discriminant Analysis
    Yang, Hai
    Xu, Yunfei
    Zhao, Qinwei
    Zhou, Ruohua
    Yan, Yonghong
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (10) : 1938 - 1945
  • [42] Local sparse representation projections for face recognition
    Lai, Zhihui
    Li, Yajing
    Wan, Minghua
    Jin, Zhong
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (7-8): : 2231 - 2239
  • [43] Local sparse representation projections for face recognition
    Zhihui Lai
    Yajing Li
    Minghua Wan
    Zhong Jin
    Neural Computing and Applications, 2013, 23 : 2231 - 2239
  • [44] Local sparse representation for astronomical image denoising
    Yang A-feng
    Lu Min
    Teng Shu-hua
    Sun Ji-xiang
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2013, 20 (10) : 2720 - 2727
  • [45] Local sparse representation for astronomical image denoising
    杨阿锋
    鲁敏
    滕书华
    孙即祥
    JournalofCentralSouthUniversity, 2013, 20 (10) : 2720 - 2727
  • [46] Kernel Local Sparse Representation Based Classifier
    Qian Liu
    Neural Processing Letters, 2016, 43 : 85 - 95
  • [47] Kernel Local Sparse Representation Based Classifier
    Liu, Qian
    NEURAL PROCESSING LETTERS, 2016, 43 (01) : 85 - 95
  • [48] Local sparse representation for astronomical image denoising
    A-feng Yang
    Min Lu
    Shu-hua Teng
    Ji-xiang Sun
    Journal of Central South University, 2013, 20 : 2720 - 2727
  • [49] An Improved Sparse Code Representation Using Local Matching For Deterministic Face Authentication
    Kurikese, Raji
    Kumar, R. Mathu Soothana S.
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2014, : 1377 - 1382
  • [50] Knowledge Representation in Probabilistic Spatio-Temporal Knowledge Bases
    Parisi, Francesco
    Grant, John
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2016, 55 : 743 - 798